|   | 
Details
   web
Records
Author Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages (down) 10003 (1 to 2)
Keywords graphene field-effect transistor, FET
Abstract In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1350
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M.
Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 88 Issue 11 Pages (down) 6758-6767
Keywords HEB mixer, charge imbalance, HF current distribution
Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 306
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title New results for NbN phonon-cooled hot electron bolometric mixers above 1 THz Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages (down) 4217-4220
Keywords NbN HEB mixers
Abstract NbN Hot Electron Bolometric (HEB) mixers have produced promising results in terms of DSB receiver noise temperature (2800 K at 1.56 THz). The LO source for these mixers is a gas laser pumped by a CO/sub 2/ laser and the device is quasi-optically coupled through an extended hemispherical lens and a self-complementary log-periodic toothed antenna. NbN HEBs do not require submicron dimensions, can be operated comfortably at 4.2 K or higher, and require LO power of about 100-500 nW. IF noise bandwidths of 5 GHz or greater have been demonstrated. The DC bias point is also not affected by thermal radiation at 300 K. Receiver noise temperatures below 1 THz are typically 450-600 K and are expected to gradually approach these levels above 1 THz as well. NbN HEB mixers thus are rapidly approaching the type of performance required of a rugged practical receiver for astronomy and remote sensing in the THz region.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1568
Permanent link to this record
 

 
Author Semenov, A. D.; Gousev, Y. P.; Renk, K. F.; Voronov, B. M.; Gol'tsman, G. N.; Gershenzon, E. M.; Schwaab, G.W.; Feinaugle, R.
Title Noise characteristics of a NbN hot-electron mixer at 2.5 THz Type Journal Article
Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 7 Issue 2 Pages (down) 3572-3575
Keywords NbN HEB mixers
Abstract The noise temperature of a NbN phonon cooled hot-electron mixer has been measured at a frequency of 2.5 THz for various operating conditions. We obtained for optimal operation a double sideband mixer noise temperature of /spl ap/14000 K and a system conversion loss of /spl ap/23 dB at intermediate frequencies up to 1 GHz. The dependences of the mixer noise temperature on the bias voltage, local oscillator power, and intermediate frequency were consistent with the phenomenological description based on the effective temperature approximation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1594
Permanent link to this record
 

 
Author Svechnikov, S. I.; Okunev, O. V.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.; Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.
Title 2.5 THz NbN hot electron mixer with integrated tapered slot antenna Type Journal Article
Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 7 Issue 2 Pages (down) 3548-3551
Keywords NbN HEB mixers
Abstract A Hot Electron Bolometer (HEB) mixer for 2.5 THz utilizing a NbN thin film device, integrated with a Broken Linearly Tapered Slot Antenna (BLTSA), has been fabricated and is presently being tested. The NbN HEB device and the antenna were fabricated on a SiO2membrane. A 0.5 micrometer thick SiO2layer was grown by rf magnetron reactive sputtering on a GaAs wafer. The HEB device (phonon-cooled type) was produced as several parallel strips, 1 micrometer wide, from an ultrathin NbN film 4-7 nm thick, that was deposited onto the SiO2layer by dc magnetron reactive sputtering. The BLTSA was photoetched in a multilayer Ti-Au metallization. In order to strengthen the membrane, the front-side of the wafer was coated with a 5 micrometer thick polyimide layer just before the membrane formation. The last operation was anisotropic etching of the GaAs in a mixture of HNO3and H2O2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1595
Permanent link to this record
 

 
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, S. I.; Vakhtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year 2006 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.
Volume 54 Issue 7 Pages (down) 2944-2948
Keywords NbN HEB mixers
Abstract In this paper, the performance of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer, cryogenically cooled by a close-cycled 4-K refrigerator, is thoroughly investigated at 300, 500, and 850 GHz. The lowest receiver noise temperatures measured at the respective three frequencies are 1400, 900, and 1350 K, which can go down to 659, 413, and 529 K, respectively, after correcting the loss and associated noise contribution of the quasi-optical system before the measured superconducting HEB mixer. The stability of the quasi-optical superconducting HEB mixer is also investigated here. The Allan variance time measured with a local oscillator pumping at 500 GHz and an IF bandwidth of 110 MHz is 1.5 s at the dc-bias voltage exhibiting the lowest noise temperature and increases to 2.5 s at a dc bias twice that voltage.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0018-9480 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1448
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Zhuang, Y.; Yngvesson, K. S.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot electron bolometric mixerss—a new technology for low-noise THz receivers Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 47 Issue 12 Pages (down) 2519-2527
Keywords NbN HEB mixers
Abstract New advances in hot electron bolometer (HEB) mixers have recently resulted in record-low receiver noise temperatures at terahertz frequencies. We have developed quasi-optically coupled NbN HEB mixers and measured noise temperatures up to 2.24 THz, as described in this paper. We project the anticipated future performance of such receivers to have even lower noise temperature and local-oscillator power requirement as well as wider gain and noise bandwidths. We introduce a proposal for integrated focal plane arrays of HEB mixers that will further increase the detection speed of terahertz systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1557-9670 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1560
Permanent link to this record
 

 
Author Karasik, B. S.; Gol'tsman, G. N.; Voronov, B. M.; Svechnikov, S. I.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.; Yngvesson, K. S.
Title Hot electron quasioptical NbN superconducting mixer Type Journal Article
Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 5 Issue 2 Pages (down) 2232-2235
Keywords NbN HEB mixers
Abstract Hot electron superconductor mixer devices made of thin NbN films on SiO/sub 2/-Si/sub 3/N/sub 4/-Si membrane have been fabricated for 300-350 GHz operation. The device consists of 5-10 parallel strips each 5 /spl mu/m long by 1 /spl mu/m wide which are coupled to a tapered slot-line antenna. The I-V characteristics and position of optimum bias point were studied in the temperature range 4.5-8 K. The performance of the mixer at higher temperatures is closer to that predicted by theory for uniform electron heating. The intermediate frequency bandwidth versus bias has also been investigated. At the operating temperature 4.2 K a bandwidth as wide as 0.8 GHz has been measured for a mixer made of 6 nm thick film. The bandwidth tends to increase with operating temperature. The performance of the NbN mixer is expected to be better for higher frequencies where the absorption of radiation should be more uniform.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1622
Permanent link to this record
 

 
Author Budyanskij, M. Ya.; Sejdman, L. A.; Voronov, B. M.; Gubkina, T. O.
Title Increase of reproducibility in production of superconducting thin films of niobium nitride Type Journal Article
Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume 5 Issue 10 Pages (down) 1950-1954
Keywords NbN films
Abstract Technique to control the composition of gas medium in the reactive magnetron discharge and the composition of the deposited films of niobium nitride using electrical parameters of discharge only, in particular, by δU = Up – Uar value at contant stabilized discharge current is described. Technique to select optimal condition for deposition of niobium nitride films when the films have composition meeting chemical formula, is suggested. Thin films of niobium nitride with up to 7 nm thickness and with rather high temperature of transition into superconducting state Tk > 10 K) and with low width of transition (δ < 0.6 K), are obtained. It is determined, that substrate material and dielectric sublayer do not affect. Tk value, while difference in coefficients of thermal expansion of substrate and of film affects δTk value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0131-5366 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1675
Permanent link to this record
 

 
Author Zhang, Wen; Li, Ning; Jiang, Ling; Miao, Wei; Lin, Zhen-Hui; Yao, Qi-Jun; Shi, Sheng-Cai; Chen, Jian; Wu, Pei-Heng; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.
Title Noise behaviour of a THz superconducting hot-electron bolometer mixer Type Journal Article
Year 2007 Publication Chinese Phys. Lett. Abbreviated Journal Chinese Phys. Lett.
Volume 24 Issue 6 Pages (down) 1778-1781
Keywords NbN HEB mixers
Abstract A quasi-optical superconducting NbN hot-electron bolometer (HEB) mixer is measured in the frequency range of 0.5–2.5 THz for understanding of the frequency dependence of noise temperature of THz coherent detectors. It has been found that noise temperature increasing with frequency is mainly due to the coupling loss between the quasi-optical planar antenna and the superconducting HEB bridge when taking account of non-uniform distribution of high-frequency current. With the coupling loss corrected, the superconducting HEB mixer demonstrates a noise temperature nearly independent of frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0256-307X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1430
Permanent link to this record