|   | 
Details
   web
Records
Author Ptitsina, N. G.; Chulkova, G. M.; Il’in, K. S.; Sergeev, A. V.; Pochinkov, F. S.; Gershenzon, E. M.; Gershenson, M. E.
Title Electron-phonon interaction in disordered metal films: The resistivity and electron dephasing rate Type Journal Article
Year 1997 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 56 Issue 16 Pages (down) 10089-10096
Keywords disordered metal films, electron-phonon interaction, electron dephasing rate, resistivity
Abstract The temperature dependence of the resistance of films of Al, Be, and NbC with small values of the electron mean free path l=1.5–10nm has been measured at 4.2–300 K. The resistance of all the films contains a T2 contribution that is proportional to the residual resistance; this contribution has been attributed to the interference between the elastic electron scattering and the electron-phonon scattering. Fitting the data to the theory of the electron-phonon-impurity interference (M. Yu. Reiser and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 92, 224 (1987) [Sov. Phys. JETP 65, 1291 (1987)]), we obtain constants of interaction of the electrons with transverse phonons, and estimate the contribution of this interaction to the electron dephasing rate in thin films of Au, Al, Be, Nb, and NbC. Our estimates are in a good agreement with the experimental data on the inelastic electron-phonon scattering in these films. This indicates that the interaction of electrons with transverse phonons controls the electron-phonon relaxation rate in thin-metal films over a broad temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1766
Permanent link to this record
 

 
Author Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences
Volume 103 Issue Pages (down) 10003 (1 to 2)
Keywords graphene field-effect transistor, FET
Abstract In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1350
Permanent link to this record
 

 
Author Belosevich, V. V.; Gayduchenko, I. A.; Titova, N. A.; Zhukova, E. S.; Goltsman, G. N.; Fedorov, G. E.; Silaev, A. A.
Title Response of carbon nanotube film transistor to the THz radiation Type Conference Article
Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 195 Issue Pages (down) 05012 (1 to 2)
Keywords field-effect transistor, FET, carbon nanotube, CNT
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1317
Permanent link to this record
 

 
Author Larrey, V.; Villegier, J. -C.; Salez, M.; Miletto-Granozio, F.; Karpov, A.
Title Processing and characterization of high Jc NbN superconducting tunnel junctions for THz analog circuits and RSFQ Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 9 Issue 2 Pages (down) 3216-3219
Keywords RSFQ, NbN, SIS
Abstract A generic NbN Superconducting Tunnel Junctions (STJ) technology has been developed using conventional substrates (Si and SOI-SIMOX) for making THz spectrometers including SIS receivers and RSFQ logic gates. NbN/MgO/NbN junctions with area of 1 /spl mu/m/sup 2/, Jc of 10 kA/cm/sup 2/ and low sub-gap leakage current (Vm>25 mV) are currently obtained from room temperature sputtered multilayers followed by a post-annealing at 250/spl deg/C. Using a thin MgO buffer layer deposited underneath the NbN electrodes, ensures lower NbN surface resistance values (Rs=7 /spl mu//spl Omega/) at 10 GHz and 4 K. Epitaxial NbN [100] films on MgO [100] with high gap frequency (1.4 THz) have also been achieved under the same deposition conditions at room temperature. The NbN SIS has shown good I-V photon induced steps when LO pumped at 300 GHz. We have developed an 8 levels Al/NbN multilayer process for making 1.5 THz SIS mixers (including Al antennas) on Si membranes patterned in SOI-SIMOX. Using the planarization techniques developed at the Si-MOS CEA-LETI Facility, we have also demonstrated on the possibility of extending our NbN technology to high level RSFQ circuit integration with 0.5 /spl mu/m/sup 2/ junction area, made on large area substrates (up to 8 inches).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1081
Permanent link to this record
 

 
Author Гершензон, Е. М.; Литвак-Горская, Л. Б.; Рабинович, Р. И.
Title Отрицательное магнитосопротивление в случае проводимости по верхней зоне Хаббарда Type Journal Article
Year 1983 Publication Физика и техника полупроводников Abbreviated Journal Физика и техника полупроводников
Volume 17 Issue 10 Pages (down) 1873-1876
Keywords compensated n-InSb, Hubbard upper zone conductivity, negative magnetoresistance
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1763
Permanent link to this record