toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nebosis, R. S.; Steinke, R.; Lang, P. T.; Schatz, W.; Heusinger, M. A.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title Picosecond YBa2Cu3O7−δdetector for far‐infrared radiation Type Journal Article
  Year 1992 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 72 Issue 11 Pages (up) 5496-5499  
  Keywords YBCO HTS detectors  
  Abstract We report on a picosecond YBa2Cu3O7−δ detector for far‐infrared radiation. The detector, consisting of a current carrying structure cooled to liquid‐nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far‐infrared laser in the frequency range from 25 to 215 cm−1. We found that the sensitivity (1 mV/W) was almost constant in this frequency range. We estimated a noise equivalent power of less than 5×10−7 W Hz−1/2. Taking into account the results of a mixing experiment (in the frequency range from 4 to 30 cm−1) we suggest that the response time of the detector was few picoseconds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1668  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 88 Issue 11 Pages (up) 6758-6767  
  Keywords HEB mixer, charge imbalance, HF current distribution  
  Abstract We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 306  
Permanent link to this record
 

 
Author Driessen, E. F. C.; Braakman, F. R.; Reiger, E. M.; Dorenbos, S. N.; Zwiller, V.; de Dood, M. J. A. doi  openurl
  Title Impedance model for the polarization-dependent optical absorption of superconducting single-photon detectors Type Journal Article
  Year 2009 Publication Eur. Phys. J. Appl. Phys. Abbreviated Journal  
  Volume 47 Issue Pages (up) 10701  
  Keywords SSPD, SNSPD  
  Abstract We measured the single-photon detection efficiency of NbN superconducting single-photon detectors as a function of the polarization state of the incident light for different wavelengths in the range from 488 nm to 1550 nm. The polarization contrast varies from ~% at 488 nm to~0% at 1550 nm, in good agreement with numerical calculations. We use an optical-impedance model to describe the absorption for polarization parallel to the wires of the detector. For the extremely lossy NbN material, the absorption can be kept constant by keeping the product of layer thickness and filling factor constant. As a consequence, the maximum possible absorption is independent of filling factor. By illuminating the detector through the substrate, an absorption efficiency of ~0% can be reached for a detector on Si or GaAs, without the need for an optical cavity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ alex_kazakov @ Serial 1062  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W. url  doi
openurl 
  Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type Journal Article
  Year 2014 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 116 Issue 4 Pages (up) 043906 (1 to 9)  
  Keywords NbN SSPD, SNSPD, TaN  
  Abstract A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1357  
Permanent link to this record
 

 
Author Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Leiman, V. G.; Fedorov, G.; Goltzman, G. N.; Gayduchenko, I. A.; Titova, N.; Coquillat, D.; But, D.; Knap, W.; Mitin, V.; Shur, M. S. url  doi
openurl 
  Title Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection Type Journal Article
  Year 2016 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 120 Issue 4 Pages (up) 044501 (1 to 13)  
  Keywords carbon nanotubes, CNT detectors, plasmons  
  Abstract We consider the carrier transport and plasmonic phenomena in the lateral carbon nanotube (CNT) networks forming the device channel with asymmetric electrodes. One electrode is the Ohmic contact to the CNT network and the other contact is the Schottky contact. These structures can serve as detectors of the terahertz (THz) radiation. We develop the device model for collective response of the lateral CNT networks which comprise a mixture of randomly oriented semiconductor CNTs (s-CNTs) and quasi-metal CNTs (m-CNTs). The proposed model includes the concept of the collective two-dimensional (2D) plasmons in relatively dense networks of randomly oriented CNTs (CNT “felt”) and predicts the detector responsivity spectral characteristics exhibiting sharp resonant peaks at the signal frequencies corresponding to the 2D plasmonic resonances. The detection mechanism is the rectification of the ac current due the nonlinearity of the Schottky contact current-voltage characteristics under the conditions of a strong enhancement of the potential drop at this contact associated with the plasmon excitation. The detector responsivity depends on the fractions of the s- and m-CNTs. The burning of the near-contact regions of the m-CNTs or destruction of these CNTs leads to a marked increase in the responsivity in agreement with our experimental data. The resonant THz detectors with sufficiently dense lateral CNT networks can compete and surpass other THz detectors using plasmonic effects at room temperatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1777  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: