|   | 
Details
   web
Records
Author Belitsky, V.; Desmaris, V.; Dochev, D.; Meledin, D.; Pavolotsky, A.
Title Towards Multi-Pixel Heterodyne Terahertz Receivers Type Conference Article
Year 2011 Publication Proc. 22th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract Terahertz multi-pixel heterodyne receivers introduce multiple challenges for their implementation, mostly due to the extremely small dimensions of all components and even smaller tolerances in terms of alignment, linear dimensions and waveguide component surface quality. In this manuscript, we present a concept of terahertz multi-pixel heterodyne receiver employing optical layout using polarization split between the LO and RF. The frontend isbased on a waveguide balanced HEB mixer for the frequency band 1.6 – 2.0 THz. The balanced HEB mixer followsthe layout of earlier demonstrated APEX T2 mixer. However for the mixer presented here, we implemented split-block layout offering inimized lengths of all waveguides and thus reducing the associated RF loss. The micromachining methods employed for producing the mixer housing and the HEB mixer chip are very suitable for producing multiple structures and hence are in-line with requirements of multi-pixel receiver technology. The demonstrated relatively simple mounting of the mixer chip with self-aligning should greatly facilitate the integration of such multi-channel receiver. Index Terms—Instrumentation, Multi-pixel, Terahertz, Waveguide Balanced Mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 975
Permanent link to this record
 

 
Author Ptitsina N. G.; Chulkova G. M.; Il'in K. S.; Sergeev A. V.; Pochinkov F. S.; Gershenzon E. M.
Title Superconductivity has been found in a number of new compounds between the non-superconducting transition elements and nonmetals such as Si, Ge, and Te. These findings have suggested possible criteria for superconductivity in both elements and compounds. Type Journal Article
Year 1997 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 56 Issue 16 Pages (up)
Keywords
Abstract The temperature dependence of the resistance of films of Al, Be, and NbC with small values of the electron mean free path L=1.5– 10 nm has been measured at 4.2–300 K. The resistance of all the films contains a T^2 contribution that is proportional to the residual resistance; this contribution has been attributed to the interference between the elastic electron scattering and the electron-phonon scattering. Fitting the data to the theory of the electron-phonon-impurity interference „M. Yu. Reiser and A. V. Sergeev, Zh. Eksp. Teor. Fiz. 92, 224 ~1987! @Sov. Phys. JETP 65, 1291 ~1987!#…, we obtain constants of nteraction of the electrons with transverse phonons, and estimate the contribution of this interaction to the electron dephasing rate in thin films of Au, Al, Be, Nb, and NbC. Our estimates are in a good agreement with the experimental data on the inelastic electronphonon scattering in these films. This indicates that the interaction of electrons with transverse phonons controls the electron-phonon relaxation rate in thin-metal films over a broad temperature range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ phisix @ Serial 988
Permanent link to this record
 

 
Author Collins, M. J.; Xiong, C.; Rey, I. H.; Vo, T. D.; He, J.; Shahnia, S.; Reardon, C.; Krauss, T. F.; Steel, M. J.; Clark, M.J.; & Eggleton, B.J.
Title Integrated spatial multiplexing of heralded single-photon sources Type Journal Article
Year 2013 Publication Nature Communications Abbreviated Journal
Volume Issue Pages (up)
Keywords
Abstract The non-deterministic nature of photon sources is a key limitation for single-photon quantum processors. Spatial multiplexing overcomes this by enhancing the heralded single-photon yield without enhancing the output noise. Here the intrinsic statistical limit of an individual source is surpassed by spatially multiplexing two monolithic silicon-based correlated photon pair sources in the telecommunications band, demonstrating a 62.4% increase in the her- alded single-photon output without an increase in unwanted multipair generation. We further demonstrate the scalability of this scheme by multiplexing photons generated in two waveguides pumped via an integrated coupler with a 63.1% increase in the heralded photon rate. This demonstration paves the way for a scalable architecture for multiplexing many photon sources in a compact integrated platform and achieving efficient two-photon inter- ference, required at the core of optical quantum computing and quantum communication protocols.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ alex_kazakov @ Serial 1001
Permanent link to this record
 

 
Author Kozorezov, A. G.; Lambert, C.; Marsili, F.; Stevens, M. J.; Verma, V. B.; Stern, J. A.; Horansky, R.; Dyer, S.; Duff, S.; Pappas, D. P.; Lita, A.; Shaw, M. D.; Mirin, R. P.; Sae Woo Nam
Title Quasiparticle recombination in hotspots in superconducting current-carrying nanowires Type Journal Article
Year 2015 Publication Abbreviated Journal Phys. Rev. B
Volume 92 Issue 6 Pages (up)
Keywords
Abstract We describe a kinetic model of recombination of non-equilibrium quasiparticles generated by single photon absorption in superconducting current-carrying nanowires. The model is developed to interpret two-photon detection experiments in which a single photon does not possess sufficient energy for breaking superconductivity at a fixed low bias current. We show that quasiparticle self- recombination in relaxing hotspot dominates diffusion expansion effects and explains the observed strong bias current, wavelength and temperature dependencies of hotspot relaxation in tungsten silicide superconducting nanowire single-photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ alex_kazakov @ Serial 1003
Permanent link to this record
 

 
Author Takesue, Hiroki; Dyer, Shellee D.; Stevens, Martin J.; Verma, Varun; Mirin, Richard P.; Nam, Sae Woo
Title Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors Type Journal Article
Year 2015 Publication Abbreviated Journal Optica
Volume 2 Issue Pages (up)
Keywords
Abstract Quantum teleportation is an essential quantum operation by which we can transfer an unknown quantum state to a remote location with the help of quantum entanglement and classical communication. Since the first experimental demonstrations using photonic qubits and continuous variables, the distance of photonic quantum teleportation over free-space channels has continued to increase and has reached >100 km. On the other hand, quantum teleportation over optical fiber has been challenging, mainly because the multifold photon detection that inevitably accompanies quantum teleportation experi- ments has been very inefficient due to the relatively low de- tection efficiencies of typical telecom-band single-photon detectors. Here, we report on quantum teleportation over optical fiber using four high-detection-efficiency supercon- ducting nanowire single-photon detectors (SNSPDs). These SNSPDs make it possible to perform highly efficient multi- fold photon measurements, allowing us to confirm that the quantum states of input photons were successfully tele- ported over 100 km of fiber with an average fidelity of 83.7  2.0%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ alex_kazakov @ Serial 1004
Permanent link to this record