|   | 
Details
   web
Records
Author Hübers, Heinz-Wilhelm; Semenov, Alexei; Schubert, Josef; Gol'tsman, Gregory; Voronov, Boris; Gershenzon, Evgeni
Title Performance of the phonon-cooled hot-electron bolometric mixer between 0.7 THz and 5.2 THz Type Conference Article
Year 2000 Publication Proc. 8-th Int. Conf. on Terahertz Electronics Abbreviated Journal Proc. 8-th Int. Conf. on Terahertz Electronics
Volume Issue Pages (down) 117-119
Keywords NbN HEB mixers
Abstract We report on the phonon cooled NbN hot electron bolometer as mixer in the terahertz frequency range. Its hybrid antenna consists of a hyperhemispheric silicon lens and a logarithmic-spiral feed antenna. Noise temperatures have been measured between 0.7 THz and 5.2 THz. A quarter wavelength layer of Parylene works as antireflection coating for the silicon lens and reduces the noise temperature by about 30. It was found that the antenna pattern at 2.5 THz is determined by the feed antenna and not by the diameter of the lens.
Address Darmstadt, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on Terahertz Electronics [8th], Held inDarmstadt, Germany on 28-29 September 2000
Notes Approved no
Call Number Serial 1553
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A. D.; Gol’tsman, G. N.
Title 2.5 THz multipixel heterodyne receiver based on NbN HEB mixers Type Abstract
Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 112
Keywords NbN HEB mixers
Abstract A 16 pixel heterodyne receiver for 2.5 THz has been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Spherical mirrors (one per pixel) and backshort distance from the antenna have been used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. Measurements of the mixers sensitivity and the input RF band are presented, and compared against calculations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1419
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title Measured results for NbN phonon-cooled hot electron bolometric mixers at 0.6-0.75 THz, 1.56 THz, and 2.5 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 105-114
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1587
Permanent link to this record
 

 
Author Gol'tsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Smirnov, Konstantin V.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M.
Title NbN phonon-cooled hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5727 Issue Pages (down) 95-106
Keywords NbN HEB mixers
Abstract We present the results of our studies of NbN phonon-cooled HEB mixers at terahertz frequencies. The mixers were fabricated from NbN film deposited on a high-resistivity Si substrate with an MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 x 0.2 μm2 active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. The largest gain bandwidth of 5.2 GHz was achieved for a mixer based on 2 nm thick NbN film deposited on MgO layer over Si substrate. The gain bandwidth of the mixer based on 3.5 nm NbN film deposited on Si with MgO is 4.2 GHz and the noise bandwidth for the same device amounts to 5 GHz. We also present the results of our research into decrease of the direct detection contribution to the measured Y-factor and a possible error of noise temperature calculation. The use of a square nickel cell mesh as an IR-filter enabled us to avoid the effect of direct detection and measure apparent value of the noise temperature which was 16% less than that obtained using conventional black polyethylene IR-filter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz and Gigahertz Electronics and Photonics IV
Notes Approved no
Call Number Serial 378
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Khosropanah, P.; Adam, A.; Merkel, H.; Kolberg, E.; Loudkov, D.; Voronov, B.; Gol'tsman, G.; Richter, H.; Hübers, H. W.
Title A broadband terahertz heterodyne receiver with an NbN HEB mixer Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 85-95
Keywords NbN HEB mixers
Abstract We present a broadband and low noise heterodyne receiver for 1.4-1.7 THz designed for the Hershel Space Observatory. A phonon- cooled NbN HEB mixer was integrated with a normal metal double- slot antenna and an elliptical silicon lens. DSB receiver noise temperature Tr was measured from 1 GHz through 8GHz intermediate frequency band with 50 MHz instantaneous bandwidth. At 4.2 K bath temperature and at 1.6 THz LO frequency Tr is 800 K with the receiver noise bandwidth of 5 GHz. While at 2 K bath temperature Tr was as low as 700 K. At 0.6 THz and 1.1 THz a spiral antenna integrated NbN HEB mixer showed the receiver noise temperature 500 K and 800 K, though no antireflection coating was used in this case. Tr of 1100 K was achieved at 2.5 THz while the receiver noise bandwidth was 4 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harward University
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 332
Permanent link to this record
 

 
Author Schwaab, G.W.; Auen, K.; Bruendermann, E.; Feinaeugle, R.; Gol’tsman, G.N.; Huebers, H.-W.; Krabbe, A.; Roeser, H.-P.; Sirmain, G.
Title 2- to 6-THz heterodyne receiver array for the Stratospheric Observatory for Infrared Astronomy (SOFIA) Type Conference Article
Year 1998 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3357 Issue Pages (down) 85-96
Keywords NbN HEB mixers, applications, stratospheric observatory, airborne
Abstract The Institute of Space Sensor Technology of the German Aerospace Center (DLR) is developing a heterodyne array receiver for the frequency range 2 to 6 THz for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Key science issues in that frequency range are the observation of lines of atoms [e.g. (OI)], ions [e.g. (CII), (NII)], and molecules (e.g. OH, HD, CO) with high spectral resolution to study the dynamics and evolution of galactic and extragalactic objects. Long term goal is the development of an integrated array heterodyne receiver with superconducting hot electron bolometric (HEB) mixers and p-type Ge or Si lasers as local oscillators. The first generation receiver will be composed of HEB mixers in a 2 pixel 2 polarization array which will be pumped by a gas laser local oscillator. Improved Schottky diode mixers are the backup solution for the HEBs. The state of the art of HEB mixer and p-type Ge laser technology are described as well as possible improvements in the ’conventional’ optically pumped far-infrared laser and Schottky diode mixer technology. Finally, the frequency coverage of the first generation heterodyne receiver for some important astronomical transitions is discussed. The expected sensitivity is compared to line fluxes measured by the ISO satellite.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Phillips, T.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Advanced Technology MMW, Radio, and Terahertz Telescopes
Notes Approved no
Call Number Serial 1583
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.
Title Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers Type Abstract
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 81
Keywords NbN HEB mixers
Abstract We present a detailed experimental study of the direct detection effect in a small volume (0.15pm x lpm) NbN hot electron bolometer mixer. It is a quasioptical mixer with a twin slot antenna designed for 700 GHz and the measurement was done at a LO frequency of 670 GHz. The direct detection effect is characterized by a change in the mixer bias current when switching broadband radiation from a 300 K hot load to a 77 K cold load in a standard Y factor measurement. The result is, depending on the receiver under study, an increase or decrease in the receiver noise temperature. We find that the small signal noise temperature, which is the noise temperature that would be observed without the presence of the direct detection effect, and thus the one that is relevant for an astronomical observation, is 20% lower than the noise temperature obtained using 300 K and 77 K calibration loads. Thus, in our case the direct detection effect reduces the mixer sensitivity. These results are in good agreement with previous measurement at THz frequencies [1]. Other experiments report an increase in mixer sensitivity [2]. To analyze this discrepancy we have designed a separate set of experiments to find out the physical origin of the direct detection effect. Possible candidates are the bias current dependence of the mixer gain and the bias current dependence of the IF match. We measured directly the change in mixer IF match and receiver gain due to the direct detection effect. From these measurements we conclude that the direct detection effect is caused by a combination of bias current reduction when switching form the 77 K to the 300 K load in combination with the bias current dependence of the receiver gain. The bias current dependence of the receiver gain is shown to be mainly caused by the current dependence of the mixer gain. We also find that an increase in receiver sensitivity due to the direct detection effect is only possible if the noise temperature change due to the direct detection is dominated by the mixer-amplifier IF match. [1] J.J.A. Baselmans, A. Baryshev, S.F. Reker, M. Hajenius, J.R. Gao, T.M. Klapwijk, Yu.Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman., Appl. Phys. Lett. 86, 163503 (2005). [2] S. Svechnokov, A. Verevkin, B. Voronov, E. Menschikov. E. Gershenzon, G. Gol'tsman, 9th Int. Symp. On Space THz. Techn., 45, (1999).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1437
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title The sensitivity and IF bandwidth of waveguide NbN hot electron bolometer mixers on MgO buffer layers over crystalline quartz Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 65-72
Keywords waveguide NbN HEB mixers
Abstract We have developed and characterized waveguide phonon-cooled NbN Hot Electron Bolometer (FMB) mixers fabricated from a 3-4 nm thick NbN film deposited on a 200nm thick MgO buffer layer over crystalline quartz. Double side band receiver noise temperatures of 900-1050 K at 1.035 THz, and 1300-1400 K at 1.26 THz have been measured at an intermediate frequency of 1.5 GHz. The intermediate frequency bandwidth, measured at 0.8 THz LO frequency, is 3.2 GHz at the optimal bias point for low noise receiver operation.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harvard university
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 326
Permanent link to this record
 

 
Author Gao, J.R.; Hiajenius, M.; Yang, Z.Q.; Klapwijk, T.M.; Miao, W.; Shi, S. C.; Voronov, B.; Gortsman, G.
Title Direct comparison of the sensitivity of a spiral and a twin-slot antenna coupled HEB mixer at 1.6 THz Type Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 59-62
Keywords NbN HEB mixers
Abstract To make a direct comparison of the sensitivity between a spiral and a twin slot antenna coupled HEB mixer, we designed both types of mixers and fabricated them in a single processing run and on the same wafer. Both mixers have similar dimensions of NbN bridges (1.5-2 pm x0.2 pm). At 1.6 THz we obtained a nearly identical receiver noise temperature from both mixers (only 5% difference), which is in a good agreement with the simulation based on semi analytical models for both antennas. In addition, by using a bandpass filter to reduce the direct detection effect and lowering the bath temperature to 2.4 K, we measured the lowest receiver noise temperature of 700 K at 1.63 THz using the twin-slot antenna mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1436
Permanent link to this record
 

 
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, Sergey I.; Vakhtomin, Yury B.; Antipov, Sergey V.; Voronov, Boris M.; Kaurova, Natalia S.; Gol'tsman, Gregory N.
Title Characterization of quasi-optical NbN phonon-cooled superconducting HEB mixers Type Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 55-58
Keywords NbN HEB mixers
Abstract In this paper, we thoroughly investigate the performance of quasi-optical NbN phonon-cooled superconducting hot-electron bolometer (HEB) mixers, cryogenically cooled by a close-cycled 4-K refrigerator at 500 GI-1z and 850 GHz. The uncorrected lowest receiver noise Abstract---In temperatures measured are 800 K at 500 CHz without anti-reflection coating, and 1000 K @ 850 GHz with a 50 11M thick Mylar anti-reflection coating. The dependence of receiver noise temperature on the critical current and bath temperature of HEB mixer is also investigated here. Lifetime of quasi-optical superconducting NbN HEB mixers of different volumes, room temperature resistances, and critical temperatures are thoroughly studied. Increased room temperature resistance with time over the initial resistance changes between 1 and 1.2, and the reduced critical current with time over the initial value fluctuates slightly around 0.7 for most HEB mixers even of different volumes, room temperature resistances, and critical temperatures. The critical current degrades sharply vvhile room temperature resistance varies over 1.25.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1435
Permanent link to this record
 

 
Author Tong, C.-Y. Edward; Kawamura, Jonathan; Todd, R. Hunter; Papa, D. Cosmo; Blundell, Raymond.; Smith, Michael; Patt, Ferdinand; Gol'tsman, Gregory; Gershenzon, Eugene
Title Successful operation of a 1 THz NbN hot-electron bolometer receiver Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 49-59
Keywords NbN HEB mixers, applications
Abstract A phonon-cooled NbN superconductive hot-electron bolometer receiver covering the frequency range 0.8-1.04 THz has successfully been used for astronomical observation at the Sub-Millimeter Telescope Observatory on Mount Graham, Arizona. This waveguide heterodyne receiver is a modified version of our fixed-tuned 800 GHz HEB receiver to allow for operation beyond 1 THz. The measured noise temperature of this receiver is about 1250 K at 0.81 THz, 560 K at 0.84 THz, and 1600 K at 1.035 THz. It has a 1 GHz wide IF bandwidth, centered at 1.8 GHz. This receiver has recently been used to detect the CO (9-8) molecular line emission at 1.037 THz in the Orion nebula. This is the first time a ground-based heterodyne receiver has been used to detect a celestial source above 1 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 303
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title Optical coupling and conversion gain for NbN HEB mixer at THz frequencies Type Conference Article
Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal Proc. 4-th Int. Semicond. Device Research Symp.
Volume Issue Pages (down) 47-50
Keywords NbN HEB mixers
Abstract
Address Charlottesville, Virginia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1601
Permanent link to this record
 

 
Author Svechnikov, S.; Verevkin, A.; Voronov, B.; Menschikov, E.; Gershenzon, E.; Gol'tsman, G.
Title Quasioptical phonon-cooled NbN hot electron bolometer mixers at 0.5-1.1 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 45-51
Keywords NbN HEB mixers
Abstract The noise performance of a receiver incorporating spiral antenna coupled NbN phonon-cooled superconducting hot electron bolometric mixer is measured from 450 GHz to 1200 GHz. The mixer element is thin (thickness nm) NbN 1.5 pm wide and 0.2 i.um long film fabricated by lift-off e-beam lithography on high-resistive silicon substrate. The noise of the receiver temperature is 1000 K at 800-900 GHz, 1200 K at 950 GHz, and 1600 K at 1.08 THz. The required (absorbed) local-oscillator power is —20 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1586
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A.D.; Gol’tsman, G.N.
Title Terahertz heterodyne array based on NbN HEB mixers Type Abstract
Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages (down) 43
Keywords NbN HEB mixers array
Abstract A 16 pixel heterodyne receiver for 2.5 THz is been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Miniature mirrors (one per pixel) and back short for the antenna were used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4 / SiO 2 membranes was found to be about 3 GHz, when an MgO buffer layers is applied on the membrane. We will also present the progress in the camera heterodyne tests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1411
Permanent link to this record
 

 
Author Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E.
Title Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology
Volume 42 Issue 1 Pages (down) 41-47
Keywords NbN HEB mixers, anti-reflection coating
Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1548
Permanent link to this record