toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte 2, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Increased bandwidth of NbN phonon cooled hot electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 381-386  
  Keywords NbN HEB mixers, IF bandwidth  
  Abstract We study experimentally the IF gain bandwidth of NbN phonon-cooled hot-electron-bolometer (HEB) mixers for a set of devices with different contact structures but an identical NbN film. We observe that the IF bandwidth depends strongly on the exact contact structure and find an IF gain bandwidth of 6 GHz for a device with an additional superconducting layer (NbTiN) in between the active NbN film and the gold contact to the antenna. These results contradict the common opinion that the IF bandwidth is determined by the phonon-escape time between the NbN film and the substrate. Hence we calculate the IF gain bandwidth of a superconducting film using a two-temperature model. We find that the bandwidth increases strongly with operating temperature and is not limited by the phonon escape time. This is because of strong temperature dependence of the phonon specific heat in the NbN film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1494  
Permanent link to this record
 

 
Author Loudkov, D.; Khosropanah, P.; Cherednichenko, S.; Adam, A.; MerkeI, H.; Kollberg, E.; Gol'tsman, G. url  openurl
  Title Broadband fourier transform spectrometer (FTS) measurements of spiral and double-slot planar antennas at THz frequencies Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (down) 373-369  
  Keywords NbN HEB mixers  
  Abstract The direct responses of NbN phonon-cooled hot electron bolometer (HEB) mixers, integrated with different planar antennas, are measured, using Fourier Transform Spectrometer (F1S). One spiral antenna and several double slot antennas, designed for 0.6, 1.4, 1.6, 1.8 and 2.5 THz central frequencies, are investigated. The Optimization of the measurement set-up is discussed in terms of the beam splitter and the F11S-to-HEB coupling. The result shows that the spiral antenna is circular polarized and has a bandwidth of about 2 THz. The frequency bands of double slot antennas show some shift from the design values and their relative bandwidth increases by increasing the design frequency. The antenna responses do not depend on the HEB bias point and temperature, as long as the device is in the resistive state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1530  
Permanent link to this record
 

 
Author Tretyakov, I.; Shurakov, A.; Perepelitsa, A.; Kaurova, N.; Svyatodukh, S.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G. url  isbn
openurl 
  Title Silicon room temperature IR detectors coated with Ag2S quantum dots Type Conference Article
  Year 2019 Publication Proc. IWQO Abbreviated Journal Proc. IWQO  
  Volume Issue Pages (down) 369-371  
  Keywords silicon detector, quantum dot, IR, surface states  
  Abstract For decades silicon has been the chief technological semiconducting material of modern microelectronics. Application of silicon detectors in optoelectronic devices are limited to the visible and near infrared ranges, due to their transparency for radiation with a wavelength higher than 1.1 μm. The expansion Si absorption towards longer wave lengths is a considerable interest to optoelectronic applications. In this work we present an elegant and effective solution to this problem using Ag2S quantum dots, creating impurity states in Si to cause sub-band gap photon absorption. The sensitivity of room temperature zero-bias Si_Ag2S detectors, which we obtained is 1011 cmHzW . Given the variety of QDs parameters such as: material, dimensions, our results open a path towards the future study and development of Si detectors for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-5-89513-451-1 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1154  
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4855 Issue Pages (down) 361-370  
  Keywords NbN HEB mixers  
  Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy  
  Notes Approved no  
  Call Number Serial 1521  
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type Conference Article
  Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 3795 Issue Pages (down) 357-368  
  Keywords NbN HEB mixers  
  Abstract We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Hwu, R.J.; Wu, K.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Photonics  
  Notes Approved no  
  Call Number Serial 1561  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: