toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tong, C.-Y. Edward; Meledin, Denis; Blundell, Raymond; Erickson, Neal; Kawamura, Jonathan; Mehdi, Imran; Gol'tsman, Gregory url  openurl
  Title A 1.5 THz hot-electron bolometer mixer operated by a planar diode-based local oscillator Type Abstract
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 286  
  Keywords waveguide NbN HEB mixers  
  Abstract We describe a 1.5 THz heterodyne receiver based on a superconductin g hot-electron bolometer mixer, which is pumped by an all-solid-state local oscillator chain. The bolometer is fabricated from a 3.5 nm-thick niobium nitride film deposited on a quartz substrate with a 200 nm-thick magnesium oxide buffer layer. The bolometer measures 0.15 fun in width and 1.5 1..tm in length. The chip consisting of the bolometer and mixer circuitry is incorporated in a fixed-tuned waveguide mixer block with a corru g ated feed horn. The local oscillator unit comprises of a cascade of four planar doublers followin g a MMIC-based W-band power amplifier. The local oscillator is coupled to the mixer using a Martin-Puplett interferometer. The local oscillator output power needed for optimal receiver performance is approximately 1 to 2 11W, and the chain is able to provide this power at a number of frequency points between 1.45 and 1.56 THz. By terminating the rf input with room temperature and 77 K loads, a Y-factor of 1.11 (DSB) has been measured at a local oscillator frequency of 1.476 THz at 3 GHz intermediate frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1501  
Permanent link to this record
 

 
Author Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory; Lagoudakis, Konstantinos G.; Benkhaoul, Moushab; Lévy, Francis; Fiore, Andrea url  doi
openurl 
  Title Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths Type Journal Article
  Year 2008 Publication Nat. Photon. Abbreviated Journal Nat. Photon.  
  Volume 2 Issue 5 Pages (up) 302-306  
  Keywords SSPD, photon-number-resolving  
  Abstract Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-number-resolving functionality is key to many protocols, such as the implementation of quantum repeaters1 and linear-optics quantum computing2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in long-distance optical communications, fluorescence spectroscopy and optical time-domain reflectometry. We demonstrate here a photon-number-resolving detector based on parallel superconducting nanowires and capable of counting up to four photons at telecommunication wavelengths, with an ultralow dark count rate and high counting frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 916  
Permanent link to this record
 

 
Author Semenov, Alexei; Richter, Heiko; Smirnov, Konstantin; Voronov, Boris; Gol'tsman, Gregory; Hübers, Heinz-Wilhelm doi  openurl
  Title The development of terahertz superconducting hot-electron bolometric mixers Type Journal Article
  Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 17 Issue 5 Pages (up) 436-439  
  Keywords NbN HEB mixers  
  Abstract We present recent advances in the development of NbN hot-electron bolometric (HEB) mixers for flying terahertz heterodyne receivers. Three important issues have been addressed: the quality of the source NbN films, the effect of the bolometer size on the spectral properties of different planar feed antennas, and the local oscillator (LO) power required for optimal operation of the mixer. Studies of the NbN films with an atomic force microscope indicated a surface structure that may affect the performance of the smallest mixers. Measured spectral gain and noise temperature suggest that at frequencies above 2.5 THz the spiral feed provides better overall performance than the double-slot feed. Direct measurements of the optimal LO power support earlier estimates made in the framework of the uniform mixer model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 357  
Permanent link to this record
 

 
Author Gol'tsman, Gregory; Semenov, Alexei; Smirnov, Konstantin; Voronov, Boris url  openurl
  Title Background limited quantum superconducting detector for submillimeter wavelengths Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 469-475  
  Keywords Ti SQD, SQUID readout  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1540  
Permanent link to this record
 

 
Author Rosfjord, Kristine M.; Yang, Joel K. W.; Dauler, Eric A.; Kerman, Andrew J.; Vikas Anant; Voronov, Boris M.; Gol'tsman, Gregory N.; Berggren, Karl K. url  doi
openurl 
  Title Nanowire Single-photon detector with an integrated optical cavity and anti-reflection coating Type Journal Article
  Year 2006 Publication Opt. Express Abbreviated Journal Opt. Express  
  Volume 14 Issue 2 Pages (up) 527-534  
  Keywords SSPD, SNSPD, cavity  
  Abstract We have fabricated and tested superconducting single-photon detectors and demonstrated detection efficiencies of 57% at 1550-nm wavelength and 67% at 1064 nm. In addition to the peak detection efficiency, a median detection efficiency of 47.7% was measured over 132 devices at 1550 nm. These measurements were made at 1.8K, with each device biased to 97.5% of its critical current. The high detection efficiencies resulted from the addition of an optical cavity and anti-reflection coating to a nanowire photodetector, creating an integrated nanoelectrophotonic device with enhanced performance relative to the original device. Here, the testing apparatus and the fabrication process are presented. The detection efficiency of devices before and after the addition of optical elements is also reported.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19503367 Approved no  
  Call Number Serial 388  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: