toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhizhon, Yan; Majedi, Hamed A. openurl 
  Title Optoelectronic mixing in the NbN superconducting nanowire single photon detectors Type Conference Article
  Year 2009 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 3786 Issue Pages (up) 9  
  Keywords Optoelectronic devices, microwave superconductivity, nonlinearity, single photon detector, superconductivity, nanowire, optical mixing, microwave mixers, amplitude modulation, intensity modulation.  
  Abstract In this paper, we present our experimental results on the electrically pumped optoelectronic mixing effect exhibited in a niobium nitride (NbN) superconducting nanowire. The experimental setup in order to test the mixer has been reported in detail. This superconductive nanowire optoelectronic mixer demonstrates photodetection and mixing in an integrated manner. We have explored both effects under a great variety of external conditions, such as temperature and bias current, in order to seek potential ways toward quantum optoelectronic detection and mixing by such nanowire device.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 651  
Permanent link to this record
 

 
Author Uzawa, Y.; Kojima, T.; Kroug, M.; Takeda, M.; Candotti, M.; Fujii, Y.; Shan, W.-L.; Kaneko, K.; Shitov, S.; Wang, M.-J. openurl 
  Title Development of the 787-950 GHz ALMA band 10 cartridge Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (up) 12-12  
  Keywords SIS mixer, noise temperature, ALMA, band 10  
  Abstract We are developing the Atacama Large Millimeter/Submillimeter Array (ALMA) Band 10 (787-950 GHz) receiver cartridge. The incoming beam from the 12-m antenna is reflected by a pair of two ellipsoidal mirrors placed in the cartridge, and then split into two orthogonal polarizations by a free-standing wire-grid. Each beam enters a corrugated feed horn attached to a double-side-band (DSB) mixer block. The mixer uses a full-height waveguide and an NbTiN- or NbN-based superconductor-insulator-superconductor (SIS) mixer chip. We are testing the following three types of mixer chips: 1) Nb SIS junctions + NbTiN/SiO2/Al tuning circuits on a quartz substrate, 2) Nb SIS junctions + NbN/SiO2/Al tuning circuits on an MgO substrate, and 3) NbN SIS junctions + NbN or NbTiN tuning circuits on an MgO substrate. The IF system uses a 4-12-GHz cooled low-noise InP-based MMIC amplifier developed by Caltech. So far, the type 1) has shown the best performance. At LO frequencies from 800 to 940 GHz, the mixer noise temperatures measured by using the standard Y-factor method were below 240 K at an operating physical temperature of 4 K. The lowest noise temperature, 169 K, was obtained at the center frequency of the band 10, as designed. These well-developed technologies will be implemented in the band 10 cartridge to achieve the ALMA specifications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 615  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Blundell, Raymond; Gol'tsman, Gregory url  doi
openurl 
  Title Stabilization scheme for hot-electron bolometer receivers using microwave radiation Type Journal Article
  Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 19 Issue 1 Pages (up) 14-19  
  Keywords HEB, mixer, Allan variance, stabilization, radiometer equation  
  Abstract We present the results of a stabilization scheme for terahertz receivers based on NbN hot-electron bolometer (HEB) mixers that uses microwave radiation with a frequency much lower than the gap frequency of NbN to compensate for mixer current fluctuations. A feedback control loop, which actively controls the power level of the injected microwave radiation, has successfully been implemented to stabilize the operating point of the HEB mixer. This allows us to increase the receiver Allan time to 10 s and also improve the temperature resolution of the receiver by about 30% in the total power mode of operation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 559  
Permanent link to this record
 

 
Author Billade, Bhushan; Belitsky, Victor; Pavolotsky, Alexey; Lapkin, Igor; Kooi, Jacob openurl 
  Title ALMA band 5 (163-211 GHz) sideband separation mixer Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (up) 19-23  
  Keywords SIS mixer, noise temperature, ALMA, band 5  
  Abstract We present the design of ALMA Band 5 sideband separation SIS mixer and experimental results for the double side band mixer and first measurement results 2SB mixer. In this mixer, the LO injection circuitry is integrated on the mixer substrate using a directional coupler, combining microstrip lines with slot-line branches in the ground plane. The isolated port of the LO coupler is terminated by wideband floating elliptical termination. The mixer employs two SIS junctions with junction area of 3 µm² each, in the twin junction configuration, followed by a quarter wave transformer to match the RF probe. 2SB mixer uses two identical but mirrored chips, whereas each DSB mixer has the same end-piece configuration. The 2S mixer has modular design such that DSB mixers are measured independently and then integrated into 2SB simply by placing around the middle piece. Measurements of the DSB mixer show noise temperature of around 40K over the entire band. 2SB mixer is not fully characterized yet, however, preliminary measurement indicates SSB (un-corrected) noise temperature of 80K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 616  
Permanent link to this record
 

 
Author Li, Chao-Te; Chen, Tse-Jun; Ni, Tong-Liang; Lu, Wei-Chun; Chiu, Chuang-Ping; Chen, Chong-Wen; Chang, Yung-Chin; Wang, Ming-Jye Shi, Sheng-Cai openurl 
  Title Development of SIS mixers for SMA 400-520 GHz band Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (up) 24-30  
  Keywords SIS mixer, noise temperature, SMA  
  Abstract SIS junction mixers were developed for SMA 400-520 GHz band. The results show receiver noise temperature around 100 K across the band, with noise contribution from RF loss and IF estimated to be around 50 K and 20K, respectively. Two schemes were used to tune out junction's parasitic capacitance. When a parallel inductor is employed, the input impedance is close to Rn, which facilitates impedance matching between the junction and the waveguide probe. Waveguide probes were designed to achieve a low feed-point impedance to match to the junction resistance. Optimum embedding impedances for lower receiver noise temperature were investigated. Performances of two schemes and composition of receiver noise were also discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 617  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: