|   | 
Details
   web
Records
Author Gao, G. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
Title A novel terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages (up) 19-23
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Göteborg, Sweden Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ qc_lasers_gao_isstt16 Serial 367
Permanent link to this record
 

 
Author Billade, Bhushan; Belitsky, Victor; Pavolotsky, Alexey; Lapkin, Igor; Kooi, Jacob
Title ALMA band 5 (163-211 GHz) sideband separation mixer Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages (up) 19-23
Keywords SIS mixer, noise temperature, ALMA, band 5
Abstract We present the design of ALMA Band 5 sideband separation SIS mixer and experimental results for the double side band mixer and first measurement results 2SB mixer. In this mixer, the LO injection circuitry is integrated on the mixer substrate using a directional coupler, combining microstrip lines with slot-line branches in the ground plane. The isolated port of the LO coupler is terminated by wideband floating elliptical termination. The mixer employs two SIS junctions with junction area of 3 µm² each, in the twin junction configuration, followed by a quarter wave transformer to match the RF probe. 2SB mixer uses two identical but mirrored chips, whereas each DSB mixer has the same end-piece configuration. The 2S mixer has modular design such that DSB mixers are measured independently and then integrated into 2SB simply by placing around the middle piece. Measurements of the DSB mixer show noise temperature of around 40K over the entire band. 2SB mixer is not fully characterized yet, however, preliminary measurement indicates SSB (un-corrected) noise temperature of 80K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 616
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Smirnov, K. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P.
Title Terahertz imaging system based on superconducting integrated receiver Type Conference Article
Year 2010 Publication Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications Abbreviated Journal Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications
Volume Issue Pages (up) 20-22
Keywords SIS mixer, SIR
Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Developing an array of SIRs would allow obtaining amplitude and phase characteristics of incident radiation in the plane of the receiver. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compare to traditional systems: i) high temperature resolution, comparable to the best results for incoherent receivers; ii) high spectral resolution allowing spectral analysis of various substances; iii) the local oscillator frequency can be varied to obtain images at different frequencies, effectively providing “color” images; iv) since a heterodyne receiver preserves the phase of the radiation, it is possible to construct 3D images. The paper presents a prototype THz imaging system using an 1 pixel SIR. We have studied the dependence of the noise equivalent temperature difference (NETD) on the integration time and also possible ways of achieving best possible sensitivity. An NETD of 13 mK was obtained with an integration time of 1 sec a detection bandwidth of 4 GHz at a local oscillator frequency of 520 GHz. An important advantage of an FFO is its wide operation range: 300-700 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number ozhegov2010terahertz Serial 1397
Permanent link to this record
 

 
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K.
Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
Year 2019 Publication J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B
Volume 36 Issue 3 Pages (up) B20
Keywords NbN PNR SSPD, SNSPD
Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0740-3224 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1225
Permanent link to this record
 

 
Author Karpov, A.; Miller, D.; Rice, F.; Zmuidzinas, J.; Stern, J. A.; Bumble, B.; LeDuc, H. G.
Title Low noise 1.2 THz SIS receiver Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages (up) 21-22
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor Jet Propulsion Laboratory, California Inst.it.u.t.e of Technology
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ sis_650K_at_1p13THz Serial 316
Permanent link to this record