toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Svechnikov, S. I.; Okunev, O. V.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.; Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S. url  doi
openurl 
  Title 2.5 THz NbN hot electron mixer with integrated tapered slot antenna Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages (down) 3548-3551  
  Keywords NbN HEB mixers  
  Abstract A Hot Electron Bolometer (HEB) mixer for 2.5 THz utilizing a NbN thin film device, integrated with a Broken Linearly Tapered Slot Antenna (BLTSA), has been fabricated and is presently being tested. The NbN HEB device and the antenna were fabricated on a SiO2membrane. A 0.5 micrometer thick SiO2layer was grown by rf magnetron reactive sputtering on a GaAs wafer. The HEB device (phonon-cooled type) was produced as several parallel strips, 1 micrometer wide, from an ultrathin NbN film 4-7 nm thick, that was deposited onto the SiO2layer by dc magnetron reactive sputtering. The BLTSA was photoetched in a multilayer Ti-Au metallization. In order to strengthen the membrane, the front-side of the wafer was coated with a 5 micrometer thick polyimide layer just before the membrane formation. The last operation was anisotropic etching of the GaAs in a mixture of HNO3and H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1595  
Permanent link to this record
 

 
Author Svechnikov, S.; Gol'tsman, G.; Voronov, B.; Yagoubov, P.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekstrom, H.; Kollberg, E.; Semenov, A.; Gousev, Y.; Renk, K. url  doi
openurl 
  Title Spiral antenna NbN hot-electron bolometer mixer at submm frequencies Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages (down) 3395-3398  
  Keywords NbN HEB mixers  
  Abstract We have studied the phonon-cooled hot-electron bolometer (HEB) as a quasioptical mixer based on a spiral antenna designed for the 0.3-1 THz frequency band and fabricated on sapphire and high resistivity silicon substrates. HEB devices were produced from superconducting 3.5-5 nm thick NbN films with a critical temperature 10-12 K and a critical current density of approximately 10/sup 7/ A/cm/sup 2/ at 4.2 K. For these devices we reached a DSB receiver noise temperature below 1500 K, a total conversion loss of L/sub t/=16 dB in the 500-700 GHz frequency range, an IF bandwidth of 3-4 GHz and an optimal LO absorbed power of /spl sime/4 /spl mu/W. We experimentally analyzed various contributions to the conversion loss and obtained an RF coupling factor of about 5 dB, internal mixer loss of 10 dB and IF mismatch of 1 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1597  
Permanent link to this record
 

 
Author Il'in, K. S.; Currie, M.; Lindgren, M.; Milostnaya, I. I.; Verevkin, A. A.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Quantum efficiency and time-domain response of superconducting NbN hot-electron photodetectors Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages (down) 3338-3341  
  Keywords NbN SSPD, SNSPD  
  Abstract We report our studies on the response of ultrathin superconducting NbN hot-electron photodetectors. We have measured the photoresponse of few-nm-thick, micron-size structures, which consisted of single and multiple microbridges, to radiation from the continuous-wave semiconductor laser and the femtosecond Ti:sapphire laser with the wavelength of 790 nm and 400 nm, respectively. The maximum responsivity was observed near the film's superconducting transition with the device optimally current-biased in the resistive state. The responsivity of the detector, normalized to its illuminated area and the coupling factor, was 220 A/W(3/spl times/10/sup 4/ V/W), which corresponded to a quantum efficiency of 340. The responsivity was wavelength independent from the far infrared to the ultraviolet range, and was at least two orders of magnitude higher than comparable semiconductor optical detectors. The time constant of the photoresponse signal was 45 ps, when was measured at 2.15 K in the resistive (switched) state using a cryogenic electro-optical sampling technique with subpicosecond resolution. The obtained results agree very well with our calculations performed using a two-temperature model of the electron heating in thin superconducting films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1566  
Permanent link to this record
 

 
Author Semenov, A. D.; Heusinger, M. A.; Renk, K. F.; Menschikov, E.; Sergeev, A. V.; Elant'ev, A. I.; Goghidze, I. G.; Gol'tsman, G. N. url  doi
openurl 
  Title Influence of phonon trapping on the performance of NbN kinetic inductance detectors Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages (down) 3083-3086  
  Keywords NbN KID  
  Abstract Voltage and microwave photoresponse of NbN thin films to modulated and pulsed optical radiation reveals, far below the superconducting transition, a response time consistent with the lifetime of nonequilibrium quasiparticles. We show that even in 5 nm thick films at 4.2 K the phonon trapping is significant resulting in a quasiparticle lifetime of a few nanoseconds that is an order of magnitude larger than the recombination time. Values and temperature dependence of the quasiparticle lifetime obey the Bardeen-Cooper-Schrieffer theory and are in quantitative agreement with the electron-phonon relaxation rate determined from the resistive response near the superconducting transition. We discuss a positive effect of the phonon trapping on the performance of kinetic inductance detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1598  
Permanent link to this record
 

 
Author Karasik, B. S.; Milostnaya, I. I.; Zorin, M. A.; Elantev, A. I.; Gol'tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title High speed current switching of homogeneous YBaCuO film between superconducting and resistive states Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages (down) 3042-3045  
  Keywords YBCO HTS HEB switches  
  Abstract Transitions of thin structured YBaCuO films from superconducting (S) to normal (N) state and back induced by a supercritical current pulse has been studied. A subnanosecond stage in the film resistance dynamic has been observed. A more gradual (nanosecond) ramp in the time dependence of the resistance follows the fast stage. The fraction of the film resistance which is attained during the fast S-N stage rises with the current amplitude. Subnanosecond N-S switching is more pronounced for smaller amplitudes of driving current and for shorter pulses. The phenomena observed are viewed within the framework of an electron heating model. The expected switching time and repetition rate of an optimized current controlling device are estimated to be 1-2 ps and 80 GHz respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1620  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: