toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Karpov, A.; Miller, D.; Stern, J. A.; Bumble, B.; LeDuc, H. G.; Zmuidzinas, J. openurl 
  Title Broadband SIS mixer for 1 THz Band Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (up) 35-35  
  Keywords SIS mixer, noise temperature  
  Abstract We report the development of a low noise and broadband SIS mixer aimed for 1 THz channel of the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver (CASIMIR), designed for the Stratospheric Observatory for Far Infrared Astronomy, (SOFIA). The mixer uses an array of 0.24 µm² Nb/Al-AlN/NbTiN SIS junctions with critical current density of 30-50 KA/cm². The junctions are shaped in order to optimize the suppression of the Josephson DC currents. We are using a double slot planar antenna to couple the mixer chip with the telescope beam. The RF matching microcircuit is made using Nb and gold films. The mixer IF circuit is designed to cover 4 – 8 GHz band. A test receiver with the new mixer has a low noise operation in a 0.87 – 1.12 THz band. The minimum DSB receiver noise measured at 1 THz is 260 K (Y=1.64), apparently the lowest reported up to date. The receiver noise corrected for the loss in the LO injection beam splitter and in the cryostat window is 200 K. The combination of a broad operation band of about 250 GHz with a low receiver noise is making the new mixer a useful element for application at SOFIA. We will discuss the prospective of a further improvement of the sensitivity and extension of the upper frequency of operation of SIS mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 614  
Permanent link to this record
 

 
Author Karasik, B. S.; Il'in, K. S.; Ptitsina, N. G.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen', E. V.; Krasnosvobodtsev, S. I. url  openurl
  Title Electron-phonon scattering rate in impure NbC films Type Abstract
  Year 1998 Publication NASA/ADS Abbreviated Journal NASA/ADS  
  Volume Issue Pages (up) Y35.08  
  Keywords NbC films  
  Abstract The study of the electron-phonon interaction in thin (20 nm) NbC films with electron mean free path l=2-13 nm gives an evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference ~T^2-term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5 – 10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence T^n with the exponent n = 2.5-3. This behaviour is well explained by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference American Physical Society, Annual March Meeting, March 16-20, 1998 Los Angeles, CA  
  Notes Approved no  
  Call Number Serial 1591  
Permanent link to this record
 

 
Author Shurakov, Alexander; Maslennikov, Sergey; Tong, Cheuk-yu E.; Gol’tsman, Gregory url  openurl
  Title Performance of an HEB direct detector utilizing a microwave reflection readout scheme Type Conference Article
  Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 36  
  Keywords HEB detector  
  Abstract We report the results of our study on the performance of a hot electron bolometric (HEB) direct detector, operated by a microwave pump. The HEB devices used in this work were made from NbN thin film deposited on high resistivity silicon with an in-situ fabrication process. The experimental setup employed is similar to the one described in [1]. The detector chips were glued to a silicon lens clamped to a copper holder mounted on the cold plate of a liquid helium cryostat. Thermal link between the lens and the holder was maintained by a thin indium shim. The HEBs were operated at a bath temperature of about 4.4 K. Conventional phonon pump, commonly realized by raising the bath temperature of the detector, was substituted by a microwave one. In this case, a CW microwave signal is injected to the device through a directional coupler connected directly to the detector holder. The power incident on the HEB device was typically 1-2 μW, and the pump frequency was in the range of 0.5-1.5 GHz. The signal sources were 2 black bodies held at temperatures of 295 K and 77 K. A chopper wheel placed in front of the cryostat window switched the input to the detector between the 2 sources. A modulation frequency of several kilohertz was chosen in order to reduce the effects of the HEB’s flicker noise. A cold mesh filter was used to define the input bandwidth of the detector. The reflected microwave signal from the HEB device was fed into a low noise amplifier, the output of which is connected to a room temperature Schottky microwave power detector. This Schottky detector, in conjunction with a lock-in amplifier, demodulated the input signal modulation from the copper wheel. As the input load was switched, the impedance of the HEB device at the microwave pump frequency also changed in response to the incident signal power variation. Therefore the reflected microwave power follows the incident signal modulation. The derived responsivity from this detection system nicely correlates with the HEB impedance. In order to provide a quantitative description of the impedance variation of the HEB device and the impact of a microwave pump, we have numerically solved the heat balance equations written for the NbN bridge and its surrounding thermal heat sink [2]. Our model also accounts for the impact of the operating frequency of the detector because of non-uniform absorption of low-frequency photons across the NbN bridge [3]. In our measurements we varied the signal source wavelength from 2 mm down to near infrared range, and hence we indirectly performed the impedance measurements at frequencies below, around and far beyond the superconducting gap. Preliminary results show good agreement between the experiment and theoretical prediction. Further measurements are still in progress. [1] A. Shurakov et al., “A Microwave Reflection Readout Scheme for Hot Electron Bolometric Direct Detector”, to appear in IEEE Trans. THz Sci. Tech., 2015. [2] S. Maslennikov, “RF heating efficiency of the terahertz superconducting hot-electron bolometer”, http://arxiv.org/pdf/1404.5276v5.pdf, 2014. [3] W. Miao et al., “Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges”, Appl. Phys. Let., 104, 052605, 2014.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1158  
Permanent link to this record
 

 
Author Chen, J.; Kang, L.; Jin, B. B.; Xu, W. W.; Wu, P. H.; Zhang, W.; Jiang, L.; Li, N.; Shi, S. C.; Gol'tsman, G. N. url  doi
openurl 
  Title Properties of terahertz superconducting hot electron bolometer mixers Type Journal Article
  Year 2008 Publication Int. J. Terahertz Sci. Technol. Abbreviated Journal Int. J. Terahertz Sci. Technol.  
  Volume 1 Issue 1 Pages (up) 37-41  
  Keywords NbN HEB mixers, noise temperature  
  Abstract A quasi-optical superconducting niobium nitride (NbN) hot electron bolometer (HEB) mixer has been fabricated and measured in the terahertz (THz) frequency range of 0.5~2.52 THz. A receiver noise temperature of 2000 K at 2.52 THz has been obtained for the mixer without corrections. Also, the effect of a Parylene C anti-reflection (AR) coating on the silicon (Si) lens has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1417  
Permanent link to this record
 

 
Author Пентин, И. В.; Смирнов, К. В.; Вахтомин, Ю. Б.; Смирнов, А. В.; Ожегов, Р. В.; Дивочий, А. В.; Гольцман, Г. Н. url  openurl
  Title Быстродействующий терагерцевый приемник и инфракрасный счетчик одиночных фотонов на эффекте разогрева электронов в сверхпроводниковых тонкопленочных наноструктурах Type Journal Article
  Year 2011 Publication Труды МФТИ Abbreviated Journal Труды МФТИ  
  Volume 3 Issue 2 Pages (up) 38-42  
  Keywords SSPD, SNSPD, HEB  
  Abstract Представлены результаты создания приемных систем терагерцевого диапазона (0.3-70 ТГц), обладающих рекордным быстродействием (50 пс) и высокой чувствительностью (до 5x 10^(-14) Вт/Гц^(1/2)), а также однофотонных приемных систем ближнего инфракрасного диапазона с квантовой эффективностью 25 %, уровнем темнового счета 10-1c., максимальной скоростью счета ~ 100 МГц и временным разрешением до 50 пс.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 707  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: