toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Goltsman, Gregory N.; Vachtomin, Yuriy B.; Antipov, Sergey V.; Finkel, Matvey I.; Maslennikov, Sergey N.; Polyakov, Stanislav L.; Svechnikov, Sergey I.; Kaurova, Natalia S.; Grishina, Elisaveta V.; Voronov, Boris M. url  openurl
  Title Low-noise NbN phonon-cooled hot-electron bolometer mixers for terahertz heterodyne receivers Type Conference Article
  Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI  
  Volume 9 Issue Pages (up) 154-159  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher International Institute of Informatics and Systemics Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 547  
Permanent link to this record
 

 
Author Sáysz, Wojciech; Guziewicz, Marek; Bar, Jan; Wegrzecki, Maciej; Grabiec, Piotr; Grodecki, Remigiusz; Wegrzecka, Iwona; Zwiller, Val; Milosnaya, Irina; Voronov, Boris; Gol’tsman, Gregory; Kitaygorsky, Jen; Sobolewski, Roman url  openurl
  Title Superconducting NbN nanostructures for single photon quantum detectors Type Abstract
  Year 2008 Publication Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons Abbreviated Journal Proc. 7-th Int. Conf. Ion Implantation and Other Applications of Ions and Electrons  
  Volume Issue Pages (up) 160  
  Keywords SSPD, SNSPD  
  Abstract Practical quantum systems such as quantum communication (QC) or quantum measurement systems require detectors with high speed, high sensitivity, high quantum efficiency (QE), and short deadtimes along with precise timing characteristics and low dark counts. Superconducting single photon detectors (SSPDs) based on ultrathin meander type NbN nanostripes (operated at T=2-5K) are a new and highly promising type of devices fulfilling above requirements. In this paper we present results of the SSPDs nanostructure technological optimization. The base for our detector is thin-film (4nm) NbN layer deposited on 350- P m-thick sapphire substrate The active element of the detector is a meander- nanostructure made of 4-nm-thick and 100-nm-wide NbN stripe, covering 10 u 10 P m 2 area with the filling factor ~0,5. The NbN superconducting films were deposited on sapphire substrates by DC reactive magnetron sputtering whereas the meander element of the detector was patterned by the direct electron-beam lithography followed by reactive-ion etching. To enhance the SSPD efficiency at Ȝ = 1.55 P m, we have performed an approach to increase the absorption of the detector by integrating it with optical resonant cavity. An optical microcavity optimized for absorption of 1.55 P m photons was designed as an one-mirror resonator consisting of a Ȝ/4 dielectric layer and a metallic mirror. The microcavity was deposited on the top of the NbN SSPD meander. The resonator was formed by the dielectric SiO 2 layer and metal mirror made of gold or palladium. Microcavity layers were deposited using a magnetron sputtering system.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1409  
Permanent link to this record
 

 
Author Verevkin, A. A.; Pearlman, A.; Slysz, W.; Zhang, J.; Sobolewski, R.; Chulkova, G.; Okunev, O.; Kouminov, P.; Drakinskij, V.; Smirnov, K.; Kaurova, N.; Voronov, B.; Gol’tsman, G.; Currie, M. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for infrared wavelength quantum communications Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5105 Issue Pages (up) 160-170  
  Keywords NbN SSPD, SNSPD, applications, single-photon detector, quantum cryptography, quantum communications, superconducting devices  
  Abstract We have developed a new class of superconducting single-photon detectors (SSPDs) for ultrafast counting of infrared (IR) photons for secure quantum communications. The devices are operated on the quantum detection mechanism, based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The detectors are fabricated from 3.5-nm-thick NbN films and they operate at 4.2 K inside a closed-cycle refrigerator or liquid helium cryostat. Various continuous and pulsed laser sources have been used in our experiments, enabling us to determine the detector experimental quantum efficiency (QE) in the photon-counting mode, response time, time jitter, and dark counts. Our 3.5-nm-thick SSPDs reached QE above 15% for visible light photons and 5% at 1.3 – 1.5 μm infrared range. The measured real-time counting rate was above 2 GHz and was limited by the read-out electronics (intrinsic response time is <30 ps). The measured jitter was <18 ps, and the dark counting rate was <0.01 per second. The measured noise equivalent power (NEP) is 2 x 10-18 W/Hz1/2 at λ = 1.3 μm. In near-infrared range, in terms of the counting rate, jitter, dark counts, and overall sensitivity, the NbN SSPDs significantly outperform their semiconductor counterparts. An ultrafast quantum cryptography communication technology based on SSPDs is proposed and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Donkor, E.; Pirich, A.R.; Brandt, H.E.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Information and Computation  
  Notes Approved no  
  Call Number Serial 1514  
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Yngvesson, K. S. url  openurl
  Title Hot electron bolometer detectors and mixers based on a superconducting-two-dimensional electron gas-superconductor structure Type Conference Article
  Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal Proc. 4-th Int. Semicond. Device Research Symp.  
  Volume Issue Pages (up) 163-166  
  Keywords S-2DEG-S HEB mixers, detectors, AlGaAs/GaAs heterostructures, NbN  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1603  
Permanent link to this record
 

 
Author Semenov, Alexei D.; Hübers, Heinz-Wilhelm; Richter, Heiko; Smirnov, Konstantin; Gol'tsman, Gregory N.; Voronov, Boris M. url  openurl
  Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Abstract
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 164  
  Keywords NbN HEB mixers  
  Abstract A number of on-going astronomical and atmospheric research programs are aimed to the Terahertz (THz) spectral region. At frequencies above about 1.4 THz heterodyne receivers planned for these missions will use superconducting hot-electron bolometers as a mixers. We present current results on the development of superconducting NbN hot- electron bolometer mixer and quasioptical radiation coupling scheme for GREAT (German Receiver for Astronomy at Terahertz Frequencies, to be used aboard of SOFIA) and TELIS (Terahertz Limb Sounder). The mixer is incorporated into hybrid antenna consisting of a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and hyperhemispherical silicon lens. For the log-spiral feed antenna, the double side-band receiver noise temperature of 5500 K was achieved at 4.3 THz. The noise temperature shows less than 3 dB increase in the intermediate frequency band from 4 GHz to 7 GHz. The hybrid antenna had almost frequency independent and symmetric radiation pattern with the beam-width slightly broader than expected for a diffraction limited pattern. Results of FTS measurements in the direct detection regime agreed with the spectral dependence of the noise temperature for spiral antennas with different spacing of inner terminals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1492  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J.; de Korte, P.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title Doubling of sensitivity and bandwidth in phonon-cooled hot-electron bolometer mixers Type Conference Article
  Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5498 Issue Pages (up) 168-176  
  Keywords Hot electron bolometers, bandwidth, noise temperature, experimental  
  Abstract NbN hot electron bolometer (HEB) mixers are at this moment the best heterodyne detectors for frequencies above 1 THz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. This results in a contact resistance between the NbN bolometer and the contact pad. We compare identical bolometers, with different NbN – contact pad interfaces, coupled with a spiral antenna. We find that cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature and the bandwidth of the HEB mixers with more than a factor of 2. We obtain a DSB noise temperature of 950 K at 2.5 THz and a Gain bandwidth of 5-6 GHz. For use in real receiver systems we design small volume (0.15x1 micron) HEB mixers with a twin slot antenna. We find that these mixers combine good sensitivity (900 K at 1.6 THz) with low LO power requirement, which is 160 – 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II  
  Notes Approved no  
  Call Number Serial 1744  
Permanent link to this record
 

 
Author Ekström, H.; Karasik, B.; Kollberg, E.; Yngvesson, K. S. url  openurl
  Title Investigation of a superconducting hot electron mixer Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 169-188  
  Keywords HEB mixers  
  Abstract Mixing at 20 GHz in niobium superconducting thin film strips in the resistive state is studied. Experiments give evidence that electron-heating is the main cause of the non linear phenomena. The requirements on the mode of operation and on the film parameters for small conversion loss and the possibility of conversion gain are discussed. Measurements indicate a minimum intrinsic conversion loss around 1 dB with a sharp drop for the lowest voltage bias-points, and a DSB mixer noise temperature between 100 and 450 K at 20 GHz. The device output noise temperature at the mixer operating point can be as low as 30-50 K. A simple theory is presented, which is based on the assumption that the small signal resistance is linearly dependent on power. This type of mixer is considered very promising for use in low-noise heterodyne receivers at THz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1642  
Permanent link to this record
 

 
Author Tong, C. Edward; Trifonov, Andrey; Blundell, Raymond; Shurakov, Alexander; Gol’tsman, Gregory url  openurl
  Title A digital terahertz power meter based on an NbN thin film Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 170  
  Keywords waveguide NbN HEB mixers  
  Abstract We have further studied the effect of subjecting a superconducting Hot Electron Bolometer (HEB) element made from an NbN thin film to microwave radiation. Since the photon energy is weak, the microwave radiation does not simply heat the film, but generates a bi-static state, switching between the superconducting and normal states, upon the application of a small voltage bias. Indeed, a relaxation oscillation of a few MHz has previously been reported in this regime [1]. Switching between the superconducting and normal states modulates the reflected microwave pump power from the device. A simple homodyne setup readily recovers the spontaneous switching waveform in the time domain. The switching frequency is a function of both the bias voltage (DC heating) and the applied microwave power. In this work, we use a 0.8 THz HEB waveguide mixer for the purpose of demonstration. The applied microwave pump, coupled through a directional coupler, is at 1 GHz. Since the pump power is of the order of a few μW, a room temperature amplifier is sufficient to amplify the reflected pump power from the HEB mixer, which beats with the microwave source in a homodyne set-up. After further amplification, the switching waveform is passed onto a frequency counter. The typical frequency of the switching pulses is 3-5 MHz. It is found that the digital frequency count increases with higher microwave pump power. When the HEB mixer is subjected to additional optical power at 0.8 THz, the frequency count also increases. When we vary the incident optical power by using a wire grid attenuator, a linear relationship is observed between the frequency count and the applied optical power, over at least an order of magnitude of power. This phenomenon can be exploited to develop a digital power meter, using a very simple electronics setup. Further experiments are under way to determine the range of linearity and the accuracy of calibration transfer from the microwave to the THz regime. References 1. Y. Zhuang, and S. Yngvesson, “Detection and interpretation of bistatic effects in NbN HEB devices,” Proc. 13 th Int. Symp. Space THz Tech., 2002, pp. 463–472.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1366  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Finkel, M. I.; Antipov, S. V.; Polyakov, S. L.; Zhang, W.; Ozhegov, R.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Korotetskaya, Yu. P.; Kaurova, N. S.; Gol'tsman, G. N.; Voronov, B. M. url  openurl
  Title Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70 THz Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 177-179  
  Keywords directly coupled NbN HEB mixers  
  Abstract We investigate both antenna coupled and directly coupled HEB mixers at several LO frequencies within the range of 2.5 THz to 70 THz. H20 (2.5+10.7 THz), and CO2 (30 THz) gas discharge lasers are used as the local oscillators. The noise temperature of antenna coupled mixers is measured at LO frequencies of 2.5 THz, 3.8 THz, and 30 THz. The results for both antenna coupled and directly coupled mixer types are compared. The devices with in—plane dimensions of 5x5 ,um 2 are pumped by LO radiation at 10.7 THz. The directly coupled HEB demonstrates nearly flat dependence of responsivity on frequency in the range of 25+64 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris, France Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 386  
Permanent link to this record
 

 
Author Goltsman, G. N. url  doi
openurl 
  Title Submillimeter superconducting receivers for astronomy, atmospheric studies and other applications Type Abstract
  Year 2006 Publication 31nd IRMW / 14th ICTE Abbreviated Journal 31nd IRMW / 14th ICTE  
  Volume Issue Pages (up) 177  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics  
  Notes Approved no  
  Call Number Serial 1443  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: