toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ekstrom, H.; Karasik, B.; Weikle, R.; Yngvesson, K. S.; Gol’tsman, G.; Kollberg, E.; Gershenzon, E. url  doi
openurl 
  Title Mixers using superconducting Nb films in the resistive state Type Conference Article
  Year 1993 Publication 23rd European Microwave Conf. Abbreviated Journal 23rd European Microwave Conf.  
  Volume Issue Pages (down) 787-789  
  Keywords Nb HEB mixers  
  Abstract The mixing of 20 GHz radiation in a Nb superconducting film in the resistive state was studied. The experiment gave evidence of electron-heating to be the origin of the non-linear phenomenon. The requirements on the operation mode and on the film parameters in order to obtain small conversion losses or even gain are determined. Our measurements indicate a conversion loss of about 6-8 dB. The hot-electron bolometer is considered to be very promising for use in heterodyne receivers in a wide frequency range from microwaves to terahertz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1651  
Permanent link to this record
 

 
Author de Lara, D. Perez; Ejrnaes, M.; Casaburi, A.; Lisitskiy, M.; Cristiano, R.; Pagano, S.; Gaggero, A.; Leoni, R.; Golt’sman, G.; Voronov, B. url  doi
openurl 
  Title Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins) Type Journal Article
  Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue 3-4 Pages (down) 771-776  
  Keywords NbN SSPD, SNSPD, nanowires  
  Abstract We are investigating the possibility of using NbN nanowires as detectors in time-of-flight mass spectrometers for investigation of macromolecules of interest in biology (proteins). NbN nanowires could overcome the two major drawbacks encountered so far by cryogenic detectors, namely the low working temperature in the mK region and the slow temporal response. In fact, NbN nanowires can work at 5 K and the response time is at least a factor 10–100 better than that of other cryogenic detectors. We present a feasibility study based on a numerical code to calculate the response of a NbN nanowire. The parameter space is investigated at different energies from IR to macromolecules (i.e. from eV to keV) in order to understand if larger value of film thickness and width can be used for the keV energy region. We also present preliminary experimental results of irradiation with X-ray photons of NbN to simulate the effect of macromolecules of the same energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1410  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Kagane, M. L. url  openurl
  Title Energy spectrum of acceptors in germanium and its response to a magnetic field Type Journal Article
  Year 1977 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP  
  Volume 45 Issue 4 Pages (down) 769-776  
  Keywords p-Ge, photoconductivity, energy spectrum, magnetic field  
  Abstract We investigated the spectrum of the submillimeter photoconductivity of p-Ge at helium temperatures and the effects of a magnetic field up to 40 kOe on the spectrum. A large number of lines of transitions between the excited states of the acceptors was observed, some of the lines were identified, and the energies of a number of spectral levels B, Al, Ga, In, and TI in Ge were identified. The results are compared with calculations and with experimental data obtained from the spectra of the photoexcitation of the ground state of the impurities. Using one transition as an example, we discuss the splitting of the excited states of acceptors in the magnetic field and under uniaxial compression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1727  
Permanent link to this record
 

 
Author Finkel, M.; Thierschmann, H.; Galatro, L.; Katan, A. J.; Thoen, D. J.; de Visser, P. J.; Spirito, M.; Klapwijk, T. M. url  doi
openurl 
  Title Performance of THz components based on microstrip PECVD SiNx technology Type Journal Article
  Year 2017 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 7 Issue 6 Pages (down) 765-771  
  Keywords transmission line measurements, power transmission lines, dielectrics, couplers, submillimeter wave circuits, coplanar waveguides, micromechanical devices  
  Abstract We present a performance analysis of passive THz components based on Microstrip transmission lines with a 2-μmthin plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNX) dielectric layer. A set of thru-reflect-line calibration structures is used for basic transmission line characterizations. We obtain losses of 9 dB/mm at 300 GHz. Branchline hybrid couplers are realized that exhibit 2.5-dB insertion loss, 1-dB amplitude imbalance, and -26-dB isolation, in agreement with simulations. We use the measured center frequency to determine the dielectric constant of the PECVD SiN x , which yields 5.9. We estimate the wafer-to-wafer variations to be of the order of 1%. Directional couplers are presented which exhibit -12-dB transmission to the coupled port and -26 dB to the isolated port. For transmission lines with 5-μm-thin silicon nitride (SiN x ), we observe losses below 4 dB/mm. The thin SiN x dielectric membrane makes the THz components compatible with scanning probe microscopy cantilevers allowing the application of this technology in on-chip circuits of a THz near-field microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1294  
Permanent link to this record
 

 
Author Il'in, K. S.; Verevkin, A. A.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title Infrared hot-electron NbN superconducting photodetectors for imaging applications Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 12 Issue 11 Pages (down) 755-758  
  Keywords NbN SSPD, SNSPD  
  Abstract We report an effective quantum efficiency of 340, responsivity >200 A W-1 (>104 V W-1) and response time of 27±5 ps at temperatures close to the superconducting transition for NbN superconducting hot-electron photodetectors (HEPs) in the near-infrared and optical ranges. Our studies were performed on a few nm thick NbN films deposited on sapphire substrates and patterned into µm-size multibridge detector structures, incorporated into a coplanar transmission line. The time-resolved photoresponse was studied by means of subpicosecond electro-optic sampling with 100 fs wide laser pulses. The quantum efficiency and responsivity studies of our photodetectors were conducted using an amplitude-modulated infrared beam, fibre-optically coupled to the device. The observed picosecond response time and the very high efficiency and sensitivity of the NbN HEPs make them an excellent choice for infrared imaging photodetectors and input optical-to-electrical transducers for superconducting digital circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1562  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: