toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Tarkhov, M.; Claudon, J.; Poizat, J. Ph.; Korneev, A.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Semenov, A. V.; Gol'tsman, G. url  doi
openurl 
  Title Ultrafast reset time of superconducting single photon detectors Type Journal Article
  Year 2008 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 92 Issue 24 Pages (down) 241112 (1 to 3)  
  Keywords SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 429  
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N. url  doi
openurl 
  Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
  Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 128 Issue 22 Pages (down) 224303 (1 to 11)  
  Keywords HEB, resonant tunneling diode, RTD  
  Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1262  
Permanent link to this record
 

 
Author Peltonen, J. T.; Astafiev, O. V.; Korneeva, Y. P.; Voronov, B. M.; Korneev, A. A.; Charaev, I. M.; Semenov, A. V.; Golt'sman, G. N.; Ioffe, L. B.; Klapwijk, T. M.; Tsai, J. S. url  doi
openurl 
  Title Coherent flux tunneling through NbN nanowires Type Journal Article
  Year 2013 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 88 Issue 22 Pages (down) 220506 (1 to 5)  
  Keywords NbN nanowires  
  Abstract We demonstrate evidence of coherent magnetic flux tunneling through superconducting nanowires patterned in a thin highly disordered NbN film. The phenomenon is revealed as a superposition of flux states in a fully metallic superconducting loop with the nanowire acting as an effective tunnel barrier for the magnetic flux, and reproducibly observed in different wires. The flux superposition achieved in the fully metallic NbN rings proves the universality of the phenomenon previously reported for InOx. We perform microwave spectroscopy and study the tunneling amplitude as a function of the wire width, compare the experimental results with theories, and estimate the parameters for existing theoretical models.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1369  
Permanent link to this record
 

 
Author Gayduchenko, I.; Kardakova, A.; Fedorov, G.; Voronov, B.; Finkel, M.; Jiménez, D.; Morozov, S.; Presniakov, M.; Goltsman, G. url  doi
openurl 
  Title Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation Type Journal Article
  Year 2015 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 118 Issue 19 Pages (down) 194303  
  Keywords terahertz detectors, asymmetric carbon nanotubes, CNT  
  Abstract Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DC voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1169  
Permanent link to this record
 

 
Author Delacour, C.; Claudon, J.; Poizat, J.-Ph.; Pannetier, B.; Bouchiat, V.; de Lamaestre, R. Espiau; Villegier, J.-C.; Tarkhov, M.; Korneev, A.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title Superconducting single photon detectors made by local oxidation with an atomic force microscope Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 90 Issue 19 Pages (down) 191116 (1 t0 3)  
  Keywords SSPD  
  Abstract The authors present a fabrication technique of superconducting single photon detectors made by local oxidation of niobium nitride ultrathin films. Narrow superconducting meander lines are obtained by direct writing of insulating niobium oxynitride lines through the films using voltage-biased tip of an atomic force microscope. Due to the 30nm resolution of the lithographic technique, the filling factor of the meander line can be made substantially higher than detector of similar geometry made by electron beam lithography, thus leading to increased quantum efficiency. Single photon detection regime of these devices is demonstrated at 4.2K.

The authors thank J.-P. Maneval for stimulating discussions. This work has been partly supported by ACI Nanoscience from French Ministry of Research, D.G.A., by Grant No. 02.445.11.7434 of Russian Ministry of Education and Science, and by the European Commission under project “SINPHONIA,” Contract No. NMP4-CT-2005-16433.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 423  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: