toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kawano, Yukio; Ishibashi, Koji url  doi
openurl 
  Title An on-chip near-field terahertz probe and detector Type Journal Article
  Year 2008 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 2 Issue 10 Pages (down) 618-621  
  Keywords single molecule, terahertz, THz, near-field, microscopy, imaging, 2DEG, GaAs/AlGaAs, detector, applications  
  Abstract The advantageous properties of terahertz waves, such as their transmission through objects opaque to visible light, are attracting attention for imaging applications. A promising approach for achieving high spatial resolution is the use of near-field imaging. Although this method has been well established in the visible and microwave regions, it is challenging to perform in the terahertz region. In the terahertz techniques investigated to date, detectors have been located remotely from the probe, which degrades sensitivity, and the influence of far-field waves is unavoidable. Here we present a new integrated detection device for terahertz near-field imaging in which all the necessary detection components — an aperture, a probe and a terahertz detector — are integrated on one semiconductor chip, which is cryogenically cooled. This scheme allows highly sensitive, high-resolution detection of the evanescent field alone and promises new capabilities for high-resolution terahertz imaging.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-4885 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 570  
Permanent link to this record
 

 
Author Bonifas, Andrew P.; McCreery, Richard L. openurl 
  Title ‘Soft’ Au, Pt and Cu contacts for molecular junctions through surface-diffusion-mediated deposition Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue 8 Pages (down) 612–617  
  Keywords  
  Abstract Virtually all types of molecular electronic devices depend on electronically addressing a molecule or molecular layer through the formation of a metallic contact. The introduction of molecular devices into integrated circuits will probably depend on the formation of contacts using a vapour deposition technique, but this approach frequently results in the metal atoms penetrating or damaging the molecular layer. Here, we report a method of forming 'soft' metallic contacts on molecular layers through surface-diffusion-mediated deposition, in which the metal atoms are deposited remotely and then diffuse onto the molecular layer, thus eliminating the problems of penetration and damage. Molecular junctions fabricated by this method exhibit excellent yield (typically >90%) and reproducibility, and allow examination of the effects of molecular-layer structure, thickness and contact work function.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 682  
Permanent link to this record
 

 
Author Zakka-Bajjani, Eva; Nguyen, François; Lee, Minhyea; Vale, Leila R.; Simmonds, Raymond W.; Aumentado, José openurl 
  Title Quantum superposition of a single microwave photon in two different 'colour' states Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 8 Pages (down) 599-603  
  Keywords fromIPMRAS  
  Abstract Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~7GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different 'colours'. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 822  
Permanent link to this record
 

 
Author Billangeon, P.-M.; Nakamura, Y. openurl 
  Title Superconducting devices: Quantum cups and balls Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue 8 Pages (down) 594-595  
  Keywords fromIPMRAS  
  Abstract A single microwave photon in a superposition of two states of different frequency is now demonstrated using a superconducting quantum interference device to mediate the coupling between two harmonics of a resonator. Such quantum circuits bring closer the possibility of controlling photon-photon interactions at the single-photon level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 820  
Permanent link to this record
 

 
Author Feofanov, A. K.; Oboznov, V. A.; Bol'Ginov, V. V.; Lisenfeld, J.; Poletto, S.; Ryazanov, V. V.; Rossolenko, A. N.; Khabipov, M.; Balashov, D.; Zorin, A. B.; Dmitriev, P. N.; Koshelets, V. P.; Ustinov, A. V. openurl 
  Title Implementation of superconductor/ferromagnet/ superconductor Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue 8 Pages (down) 593-597  
  Keywords fromIPMRAS  
  Abstract High operation speed and low energy consumption may allow the superconducting digital single-flux-quantum circuits to outperform traditional complementary metal-oxide-semiconductor logic. The remaining major obstacle towards high element densities on-chip is a relatively large cell size necessary to hold a magnetic flux quantum Φ0. Inserting a Ï€-type Josephson junction in the cell is equivalent to applying flux Φ0/2 and thus makes it possible to solve this problem. Moreover, using Ï€-junctions in superconducting qubits may help to protect them from noise. Here we demonstrate the operation of three superconducting circuits-two of them are classical and one quantum-that all utilize such Ï€-phase shifters realized using superconductor/ferromagnet/superconductor sandwich technology. The classical circuits are based on single-flux-quantum cells, which are shown to be scalable and compatible with conventional niobium-based superconducting electronics. The quantum circuit is a Ï€-biased phase qubit, for which we observe coherent Rabi oscillations. We find no degradation of the measured coherence time compared to that of a reference qubit without a Ï€-junction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 805  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: