toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Billade, Bhushan; Belitsky, Victor; Pavolotsky, Alexey; Lapkin, Igor; Kooi, Jacob openurl 
  Title ALMA band 5 (163-211 GHz) sideband separation mixer Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (down) 19-23  
  Keywords SIS mixer, noise temperature, ALMA, band 5  
  Abstract We present the design of ALMA Band 5 sideband separation SIS mixer and experimental results for the double side band mixer and first measurement results 2SB mixer. In this mixer, the LO injection circuitry is integrated on the mixer substrate using a directional coupler, combining microstrip lines with slot-line branches in the ground plane. The isolated port of the LO coupler is terminated by wideband floating elliptical termination. The mixer employs two SIS junctions with junction area of 3 µm² each, in the twin junction configuration, followed by a quarter wave transformer to match the RF probe. 2SB mixer uses two identical but mirrored chips, whereas each DSB mixer has the same end-piece configuration. The 2S mixer has modular design such that DSB mixers are measured independently and then integrated into 2SB simply by placing around the middle piece. Measurements of the DSB mixer show noise temperature of around 40K over the entire band. 2SB mixer is not fully characterized yet, however, preliminary measurement indicates SSB (un-corrected) noise temperature of 80K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 616  
Permanent link to this record
 

 
Author Uzawa, Y.; Kojima, T.; Kroug, M.; Takeda, M.; Candotti, M.; Fujii, Y.; Shan, W.-L.; Kaneko, K.; Shitov, S.; Wang, M.-J. openurl 
  Title Development of the 787-950 GHz ALMA band 10 cartridge Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (down) 12-12  
  Keywords SIS mixer, noise temperature, ALMA, band 10  
  Abstract We are developing the Atacama Large Millimeter/Submillimeter Array (ALMA) Band 10 (787-950 GHz) receiver cartridge. The incoming beam from the 12-m antenna is reflected by a pair of two ellipsoidal mirrors placed in the cartridge, and then split into two orthogonal polarizations by a free-standing wire-grid. Each beam enters a corrugated feed horn attached to a double-side-band (DSB) mixer block. The mixer uses a full-height waveguide and an NbTiN- or NbN-based superconductor-insulator-superconductor (SIS) mixer chip. We are testing the following three types of mixer chips: 1) Nb SIS junctions + NbTiN/SiO2/Al tuning circuits on a quartz substrate, 2) Nb SIS junctions + NbN/SiO2/Al tuning circuits on an MgO substrate, and 3) NbN SIS junctions + NbN or NbTiN tuning circuits on an MgO substrate. The IF system uses a 4-12-GHz cooled low-noise InP-based MMIC amplifier developed by Caltech. So far, the type 1) has shown the best performance. At LO frequencies from 800 to 940 GHz, the mixer noise temperatures measured by using the standard Y-factor method were below 240 K at an operating physical temperature of 4 K. The lowest noise temperature, 169 K, was obtained at the center frequency of the band 10, as designed. These well-developed technologies will be implemented in the band 10 cartridge to achieve the ALMA specifications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 615  
Permanent link to this record
 

 
Author Jackson, B. D.; Hesper, R.; Adema, J.; Barkhof, J.; Baryshev, A. M.; Zijlstra, T.; Zhu, S.; Klapwijk, T. M. openurl 
  Title Series production of state-of-the-art 602-720 GHz SIS receivers for band 9 of ALMA Type Conference Article
  Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages (down) 7-11  
  Keywords SIS mixer, noise temperature, ALMA, band 9  
  Abstract The Atacama Large Millimeter/Sub-millimeter Array (ALMA) requires the development and production of 73 state-of-the-art receivers for the 602-720 GHz range – the ALMA Band 9 cartridges. Development and pre-production of the first 8 cartridges was completed between 2003 and 2008, resulting in a cartridge design that meets the project's challenging requirements. The cartridge design remains essentially unchanged for production, while the production and test processes developed during pre-production have been fine-tuned to address the biggest new challenge for this phase – ramping up production to a rate of 2 cartridges per month over 2009-2012.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 618  
Permanent link to this record
 

 
Author Maslennikov, S. url  openurl
  Title RF heating efficiency of the terahertz superconducting hot-electron bolometer Type Journal Article
  Year 2014 Publication arXiv Abbreviated Journal arXiv  
  Volume 1404.5276 Issue Pages (down) 1-4  
  Keywords superconducting hot-electron bolometer mixer, HEB, NbN, distributed model, HEB model, HEB mixer model, heat balance equa-tions, conversion gain, RF heating efficiency, noise temperature, simulation, Euler method  
  Abstract We report results of the numerical solution by the Euler method of the system of heat balance equations written in recurrent form for the superconducting hot-electron bolometer (HEB) embedded in an electrical circuit. By taking into account the dependence of the HEB resistance on the transport current we have been able to calculate rigorously the RF heating efficiency, absorbed local oscillator (LO) power and conversion gain of the HEB mixer. We show that the calculated conversion gai nis in excellent agreement with the experimental results, and that the substitution of the calculated RF heating efficiency and absorbed LO power into the expressions for the conversion gain and noise temperature given by the analytical small-signal model of the HEB yields excellent agreement with the corresponding measured values  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 954  
Permanent link to this record
 

 
Author Tretyakov, I. V.; Ryabchun, S. A.; Maslennikov, S. N.; Finkel, M. I.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Gol'tsman, G.N. openurl 
  Title NbN HEB mixer: fabrication, noise temperature reduction and characterization Type Conference Article
  Year 2008 Publication Proc. Basic problems of superconductivity Abbreviated Journal  
  Volume Issue Pages (down)  
  Keywords HEB, mixer, noise temperature, conversion gain bandwidth  
  Abstract We demonstrate that in the terahertz region superconducting hot-electron mixers offer the lowest noise temperature, opening the possibility of using HTS's in the future to fabricate these devices. Specifically, a noise temperature of 950 K was measured for the receiver operating at 2.5 THz with a NbN HEB mixer, and a gain bandwidth of 6 GHz was measured at 300 GHz near Tc for the same mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Moscow-Zvenigorod Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 591  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: