|   | 
Details
   web
Records
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N.
Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
Year 2006 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 19 Issue 4 Pages (down) L (9 to 12)
Keywords NbN HEB mixers
Abstract We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1456
Permanent link to this record
 

 
Author Justtanont, K.; Decin, L.; Schöier, F. L.; Maercker, M.; Olofsson, H.; Bujarrabal, V.; Marston, A. P.; Teyssier, D.; Alcolea, J.; Cernicharo, J.; Dominik, C.; de Koter, A.; Melnick, G.; Menten, K.; Neufeld, D.; Planesas, P.; Schmidt, M.; Szczerba, R.; Waters, R.; de Graauw, Th.; Whyborn, N.; Finn, T.; Helmich, F.; Siebertz, O.; Schmülling, F.; Ossenkopf, V.; Lai, R.
Title A HIFI preview of warm molecular gas around χ Cygni: first detection of H2O emission toward an S-type AGB star Type Journal Article
Year 2010 Publication Astron. Astrophys. Abbreviated Journal
Volume 521 Issue Pages (down) L6
Keywords HEB mixer applications, HIFI, Herschel, stars: AGB and post-AGB / circumstellar matter / stars: kinematics and dynamics / stars: individual: χ Cyg / stars: late-type / stars: mass-loss
Abstract Aims. A set of new, sensitive, and spectrally resolved, sub-millimeter line observations are used to probe the warm circumstellar gas around the S-type AGB star χ Cyg. The observed lines involve high rotational quantum numbers, which, combined with previously obtained lower-frequency data, make it possible to study in detail the chemical and physical properties of, essentially, the entire circumstellar envelope of χ Cyg.

Methods. The data were obtained using the HIFI instrument aboard Herschel, whose high spectral resolution provides valuable information about the line profiles. Detailed, non-LTE, radiative transfer modelling, including dust radiative transfer coupled with a dynamical model, has been performed to derive the temperature, density, and velocity structure of the circumstellar envelope.

Results. We report the first detection of circumstellar H2O rotational emission lines in an S-star. Using the high-J CO lines to derive the parameters for the circumstellar envelope, we modelled both the ortho- and para-H2O lines. Our modelling results are consistent with the velocity structure expected for a dust-driven wind. The derived total H2O abundance (relative to H2) is (1.1±0.2) × 10-5, much lower than that in O-rich stars. The derived ortho-to-para ratio of 2.1±0.6 is close to the high-temperature equilibrium limit, consistent with H2O being formed in the photosphere.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1096
Permanent link to this record
 

 
Author Decin, L.; Justtanont, K.; De Beck, E.; Lombaert, R.; de Koter, A.; Waters, L. B. F. M.; Marston, A. P.; Teyssier, D.; Schöier, F. L.; Bujarrabal, V.; Alcolea, J.; Cernicharo, J.; Dominik, C.; Melnick, G.; Menten, K.; Neufeld, D. A.; Olofsson, H.; Planesas, P.; Schmidt, M.; Szczerba, R.; de Graauw, T.; Helmich, F.; Roelfsema, P.; Dieleman, P.; Morris, P.; Gallego, J. D.; Díez-González, M. C.; Caux, E.
Title Water content and wind acceleration in the envelope around the oxygen-rich AGB star IK Tauri as seen by Herschel/HIFI Type Journal Article
Year 2010 Publication Astron. Astrophys. Abbreviated Journal
Volume 521 Issue Pages (down) L4
Keywords HEB mixer applications, HIFI, Herschel, line: profiles / radiative transfer / instrumentation: spectrographs / stars: AGB and post-AGB / circumstellar matter / submillimeter: stars
Abstract During their asymptotic giant branch evolution, low-mass stars lose a significant fraction of their mass through an intense wind, enriching the interstellar medium with products of nucleosynthesis. We observed the nearby oxygen-rich asymptotic giant branch star IK Tau using the high-resolution HIFI spectrometer onboard Herschel. We report on the first detection of H216O and the rarer isotopologues H217O and H218O in both the ortho and para states. We deduce a total water content (relative to molecular hydrogen) of $6.6 \times 10^{-5}$, and an ortho-to-para ratio of 3:1. These results are consistent with the formation of H2O in thermodynamical chemical equilibrium at photospheric temperatures, and does not require pulsationally induced non-equilibrium chemistry, vaporization of icy bodies or grain surface reactions. High-excitation lines of 12CO, 13CO, 28SiO, 29SiO, 30SiO, HCN, and SO have also been detected. From the observed line widths, the acceleration region in the inner wind zone can be characterized, and we show that the wind acceleration is slower than hitherto anticipated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1090
Permanent link to this record
 

 
Author Bujarrabal, V.; Alcolea, J.; Soria-Ruiz, R.; Planesas, P.; Teyssier, D.; Marston, A. P.; Cernicharo, J.; Decin, L.; Dominik, C.; Justtanont, K.; de Koter, A.; Melnick, G.; Menten, K. M.; Neufeld, D. A.; Olofsson, H.; Schmidt, M.; Schöier, F. L.; Szczerba, R.; Waters, L. B. F. M.; Quintana-Lacaci, G.; Güsten, R.; Gallego, J. D.; Díez-González, M. C.; Barcia, A.; López-Fernández, I.; Wildeman, K.; Tielens, A. G. G. M.; Jacobs, K.
Title Herschel/HIFI observations of high-J CO transitions in the protoplanetary nebula CRL 618 Type Journal Article
Year 2010 Publication Astron. Astrophys. Abbreviated Journal
Volume 521 Issue Pages (down) L3 (1 to 5)
Keywords HEB mixer applications, HIFI, Herschel
Abstract Aims. We aim to study the physical conditions, particularly the excitation state, of the intermediate-temperature gas components in the protoplanetary nebula CRL 618. These components are particularly important for understanding the evolution of the nebula.

Methods. We performed Herschel/HIFI observations of several CO lines in the far-infrared/sub-mm in the protoplanetary nebula CRL 618. The high spectral resolution provided by HIFI allows measurement of the line profiles. Since the dynamics and structure of the nebula is well known from mm-wave interferometric maps, it is possible to identify the contributions of the different nebular components (fast bipolar outflows, double shells, compact slow shell) to the line profiles. The observation of these relatively high-energy transitions allows an accurate study of the excitation conditions in these components, particularly in the warm ones, which cannot be properly studied from the low-energy lines.

Results. The 12CO J = 16–15, 10–9, and 6–5 lines are easily detected in this source. Both 13CO J = 10–9 and 6–5 are also detected. Wide profiles showing spectacular line wings have been found, particularly in 12CO J = 16–15. Other lines observed simultaneously with CO are also shown. Our analysis of the CO high-J transitions, when compared with the existing models, confirms the very low expansion velocity of the central, dense component, which probably indicates that the shells ejected during the last AGB phases were driven by radiation pressure under a regime of maximum transfer of momentum. No contribution of the diffuse halo found from mm-wave data is identified in our spectra, because of its low temperature. We find that the fast bipolar outflow is quite hot, much hotter than previously estimated; for instance, gas flowing at 100 km s-1 must have a temperature higher than ~200 K. Probably, this very fast outflow, with a kinematic age <100 yr, has been accelerated by a shock and has not yet cooled down. The double empty shell found from mm-wave mapping must also be relatively hot, in agreement with the previous estimate.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1084
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Terahertz Heterodyn Receiver with a hot-electron bolometer mixer Type Conference Article
Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop
Volume Issue Pages (down) 3-24
Keywords NbN HEB mixers
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address
Corporate Author Thesis
Publisher NASA Place of Publication Editor Wolf, U.; Farhoomand, J.; McCreight, C.R.
Language Summary Language Original Title
Series Editor Series Title NASA CP Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Volume: 211408 Approved no
Call Number Serial 1537
Permanent link to this record
 

 
Author Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.
Title Terahertz hot electron bolometer waveguide mixers for GREAT Type Journal Article
Year 2012 Publication Astron. Astrophys. Abbreviated Journal A&A
Volume 542 Issue Pages (down) L2
Keywords HEB mixer, applications
Abstract Context. Supplementing the publications based on the first-light observations with the German REceiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. This Letter complements the GREAT instrument Letter and focuses on the mixers itself.

Aims. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given.

Methods. Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss.

Results. Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. We show that our niobium-titanium-nitride (NbTiN) material HEBs on silicon nitride (SiN) membrane substrates have an intermediate frequency (IF) noise roll-off frequency above 2.8 GHz, which does not limit the current receiver IF bandwidth. Our mixer technology development efforts culminate in the first successful operation of a waveguide-based HEB mixer at 2.5 THz and deployment for radioastronomy. A significant contribution to the success of GREAT is made by technological development, thorough characterization and performance optimization of the mixer and its IF interface for receiver operation on SOFIA. In particular, the development of an optimized mixer IF interface contributes to the low passband ripple and excellent stability, which GREAT demonstrated during its initial successful astronomical observation runs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 907
Permanent link to this record
 

 
Author Loenen, A. F.; van der Werf, P. P.; Güsten, R.; Meijerink, R.; Israel, F. P.; Requena-Torres, M. A.; García-Burillo, S.; Harris, A. I.; Klein, T.; Kramer, C.; Lord, S.; Martín-Pintado, J.; Röllig, M.; Stutzki, J.; Szczerba, R.; Weiß, A.; Philipp-May, S.; Yorke, H.; Caux, E.; Delforge, B.; Helmich, F.; Lorenzani, A.; Morris, P.; Philips, T. G.; Risacher, C.; Tielens, A. G. G. M.
Title Excitation of the molecular gas in the nuclear region of M 82 Type Journal Article
Year 2010 Publication Astron. Astrophys. Abbreviated Journal
Volume 521 Issue Pages (down) L2
Keywords HEB mixer applications, HIFI, Herschel, galaxies: individual: M 82 / submillimeter: ISM / ISM: molecules / galaxies: ISM / galaxies: starburst
Abstract We present high-resolution HIFI spectroscopy of the nucleus of the archetypical starburst galaxy M 82. Six 12CO lines, 2 13CO lines and 4 fine-structure lines have been detected. Besides showing the effects of the overall velocity structure of the nuclear region, the line profiles also indicate the presence of multiple components with different optical depths, temperatures, and densities in the observing beam. The data have been interpreted using a grid of PDR models. It is found that the majority of the molecular gas is in low density (n = 103.5 cm-3) clouds, with column densities of NH = 1021.5 cm-2 and a relatively low UV radiation field (G0 = 102). The remaining gas is predominantly found in clouds with higher densities (n = 105 cm-3) and radiation fields (G0 = 102.75), but somewhat lower column densities (NH = 1021.2 cm-2). The highest J CO lines are dominated by a small (1% relative surface filling) component, with an even higher density (n = 106 cm-3) and UV field (G0 = 103.25). These results show the strength of multi-component modelling for interpretating the integrated properties of galaxies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1097
Permanent link to this record
 

 
Author Shurakov, Alexander; Tong, Edward; Blundell, Raymond; Gol'tsman, Gregory
Title Microwave stabilization of HEB mixer by a microchip controller Type Conference Article
Year 2012 Publication IEEE MTT-S international microwave symposium digest Abbreviated Journal
Volume Issue Pages (down) 1-3
Keywords HEB mixer stability, microwave injection, Allan variance, Allan time
Abstract The stability of a Hot Electron Bolometer (HEB) mixer can be improved by the use of microwave injection. In this article we report a refinement of this approach. We introduce a microchip controller to facilitate the implementation of the stabilization scheme, and demonstrate that the feedback loop effectively suppresses drifts in the HEB bias current, leading to an improvement in the receiver stability. The measured Allan time of the mixer's IF output power is increased to > 10 s.
Address Montreal, QC, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 857
Permanent link to this record
 

 
Author Maslennikov, S.
Title RF heating efficiency of the terahertz superconducting hot-electron bolometer Type Journal Article
Year 2014 Publication arXiv Abbreviated Journal arXiv
Volume 1404.5276 Issue Pages (down) 1-4
Keywords superconducting hot-electron bolometer mixer, HEB, NbN, distributed model, HEB model, HEB mixer model, heat balance equa-tions, conversion gain, RF heating efficiency, noise temperature, simulation, Euler method
Abstract We report results of the numerical solution by the Euler method of the system of heat balance equations written in recurrent form for the superconducting hot-electron bolometer (HEB) embedded in an electrical circuit. By taking into account the dependence of the HEB resistance on the transport current we have been able to calculate rigorously the RF heating efficiency, absorbed local oscillator (LO) power and conversion gain of the HEB mixer. We show that the calculated conversion gai nis in excellent agreement with the experimental results, and that the substitution of the calculated RF heating efficiency and absorbed LO power into the expressions for the conversion gain and noise temperature given by the analytical small-signal model of the HEB yields excellent agreement with the corresponding measured values
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 954
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Photon absorption near the gap frequency in a hot electron bolometer Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages (down) 1-4
Keywords NBN HEB mixer
Abstract The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1331
Permanent link to this record