|   | 
Details
   web
Records
Author Grinolds, M. S.; Maletinsky, P.; Hong, S.; Lukin, M. D.; Walsworth, R. L.; Yacoby, A.
Title Quantum control of proximal spins using nanoscale magnetic resonance imaging Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 9 Pages (up) 687-692
Keywords fromIPMRAS
Abstract Quantum control of individual spins in condensed-matter systems is an emerging field with wide-ranging applications in spintronics, quantum computation and sensitive magnetometry. Recent experiments have demonstrated the ability to address and manipulate single electron spins through either optical or electrical techniques. However, it is a challenge to extend individual-spin control to nanometre-scale multi-electron systems, as individual spins are often irresolvable with existing methods. Here we demonstrate that coherent individual-spin control can be achieved with few- nanometre resolution for proximal electron spins by carrying out single-spin magnetic resonance imaging (MRI), which is realized using a scanning-magnetic-field gradient that is both strong enough to achieve nanometre spatial resolution and sufficiently stable for coherent spin manipulations. We apply this scanning-field-gradient MRI technique to electronic spins in nitrogen-vacancy (NV) centres in diamond and achieve nanometre resolution in imaging, characterization and manipulation of individual spins. For NV centres, our results in individual-spin control demonstrate an improvement of nearly two orders of magnitude in spatial resolution when compared with conventional optical diffraction-limited techniques. This scanning-field-gradient microscope enables a wide range of applications including materials characterization, spin entanglement and nanoscale magnetometry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 827
Permanent link to this record
 

 
Author Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth; Braunstein, Samuel L.
Title Continuous-variable quantum cryptography using two-way quantum communication Type Journal Article
Year 2008 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 4 Issue 9 Pages (up) 726-730
Keywords fromIPMRAS
Abstract Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a `hardware solution' for enhancing the security thresholds of these protocols. This is possible by extending them to two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 798
Permanent link to this record
 

 
Author Hannay, Timo
Title A new kind of science? Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue Pages (up) 742
Keywords fromIPMRAS
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 818
Permanent link to this record
 

 
Author Prevedel, Robert; Hamel, Deny R.; Colbeck, Roger; Fisher, Kent; Resch, Kevin J.
Title Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 10 Pages (up) 757-761
Keywords fromIPMRAS
Abstract Heisenberg's uncertainty principle provides a fundamental limitation on the ability of an observer holding classical information to predict the outcome when one of two measurements is performed on a quantum system. However, an observer with access to a particle (stored in a quantum memory) which is entangled with the system generally has a reduced uncertainty: indeed, if the particle and system are maximally entangled, the observer can perfectly predict the outcome of whichever measurement is chosen. This effect has recently been quantified in a new entropic uncertainty relation. Here we experimentally investigate this relation, showing its effectiveness as an efficient entanglement witness. We use entangled photon pairs, an optical delay line serving as a simple quantum memory and fast, active feed-forward. Our results quantitatively agree with the new uncertainty relation. Our technique acts as a witness for almost all entangled states in our experiment as we obtain lower uncertainties than would be possible without the entangled particle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 821
Permanent link to this record
 

 
Author Fuchs, G. D.; Burkard, G.; Klimov, P. V.; Awschalom, D. D.
Title A quantum memory intrinsic to single nitrogen–vacancy centres in diamond Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 10 Pages (up) 789-793
Keywords fromIPMRAS
Abstract A quantum memory, composed of a long-lived qubit coupled to each processing qubit, is important to building a scalable platform for quantum information science. These two qubits should be connected by a fast and high-fidelity operation to store and retrieve coherent quantum states. Here, we demonstrate a room-temperature quantum memory based on the spin of the nitrogen nucleus intrinsic to each nitrogen–vacancy (NV) centre in diamond. We perform coherent storage of a single NV centre electronic spin in a single nitrogen nuclear spin using Landau–Zener transitions across a hyperfine-mediated avoided level crossing. By working outside the asymptotic regime, we demonstrate coherent state transfer in as little as 120 ns with total storage fidelity of 88±6%. This work demonstrates the use of a quantum memory that is compatible with scaling as the nitrogen nucleus is deterministically present in each NV centre defect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 823
Permanent link to this record