toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Yu. P.; Kaurova, N. S.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title Hot electron bolometer mixer for 20 – 40 THz frequency range Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 393-397  
  Keywords IR NbN HEB mixers  
  Abstract The developed HEB mixer was based on a 5 nm thick NbN film deposited on a GaAs substrate. The active area of the film was patterned as a 30×20 μm 2 strip and coupled with a 50 Ohm coplanar line deposited in situ. An extended hemispherical germanium lens was used to focus the LO radiation on the mixer. The responsivity of the mixer was measured in a direct detection mode in the 25÷64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 μm wavelength CW CO 2 laser was utilized as a local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 369  
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G. N.; Voronov, B. M. url  doi
openurl 
  Title Superconducting hot electron bolometer as mixer for far-infrared heterodyne receivers Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4855 Issue Pages (up) 395-401  
  Keywords NbN HEB mixers  
  Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. In instruments which are currently under development for SOFIA or Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. We present results of the development of a phonon-cooled NbN HEB mixer for GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be flown aboard SOFIA. The mixer is a small superconducting bridge incorporated in a planar feed antenna and a hyperhemispherical lens. Mixers with logarithmic-spiral and double-slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 17 dB. The response of the mixer was linear up to 400 K load temperature. The performance was verified by measuring an emission line of methanol at 2.5 THz. The measured linewidth is in good agreement with the linewidth deduced from pressure broadening measurements at millimeter wavelength. The results demonstrate that the NbN HEB is very well suited as a mixer for far-infrared heterodyne receivers.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Tucson, USA Editor Phillips, T. G.; Zmuidzinas, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Abbreviated Series Title  
  Series Volume 4855 Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy  
  Notes Approved no  
  Call Number Serial 335  
Permanent link to this record
 

 
Author Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B. url  doi
openurl 
  Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages (up) 395-398  
  Keywords NbN HEB mixers, noise temperature  
  Abstract In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1429  
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W. url  openurl
  Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages (up) 405-412  
  Keywords NbN HEB mixers  
  Abstract Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1502  
Permanent link to this record
 

 
Author Huebers, H.-W.; Schubert, J.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Schwaab, G. W. url  doi
openurl 
  Title NbN phonon-cooled hot-electron bolometer as a mixer for THz heterodyne receivers Type Conference Article
  Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 3828 Issue Pages (up) 410-416  
  Keywords NbN HEB mixers  
  Abstract We have investigated a phonon-cooled NbN hot electron bolometric (HEB) mixer in the frequency range from 0.7 THz to 5.2 THz. The device was a 3.5 nm thin film with an in- plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The measured DSB receiver noise temperatures are 1500 K, 2200 K, 2600 K, 2900 K, 4000 K, 5600 K and 8800 K. The sensitivity fluctuation, the long term stability, and the antenna pattern were measured and the suitability of the mixer for a practical heterodyne receiver is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Spie Place of Publication Editor Chamberlain, J.M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz Spectroscopy and Applications II  
  Notes Approved no  
  Call Number Serial 1477  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: