|   | 
Details
   web
Records
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Svechnikov, S. I.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.
Title NbN hot electron bolometric mixer for 2.5 THz: the phonon cooled version Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (up) 258-271
Keywords NbN HEB mixers
Abstract We describe an investigation of a NbN HEB mixer for 2.5 THz. NbN HEBs are phonon-cooled de-. vices which are expected, according to theory, to achieve up to 10 GHz IF conversion gain bandwidth. We have developed an antenna coupled device using a log-periodic antenna and a silicon lens. We have demon- strated that sufficient LO power can be coupled to the device in order to bring it to the optimum mixer oper- ating point. The LO power required is less than 1 microwatts as measured directly at the device. We also describe the impedance characteristics of NbN devices and compare them with theory. The experimental results agree with theory except for the imaginary part of the impedance at very low frequencies as was demonstrated by other groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1605
Permanent link to this record
 

 
Author Vahtomin, Yuriy B.; Finkel, Matvey I.; Antipov, Sergey V.; Voronov, Boris M.; Smirnov, Konstantin V.; Kaurova, Natalia S.; Drakinski, Vladimir N.; Gol'tsman, Gregogy N.
Title Gain bandwidth of phonon-cooled HEB mixer made of NbN thin film with MgO buffer layer on Si Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (up) 259-270
Keywords NbN HEB mixers, conversion gain bandwidth
Abstract We present recently obtained values for gain bandwidth of NbN HEB mixers for different substrates and film thicknesses and for MgO buffer layer on Si at LO frequency of 0.85-1 THz. The maximal bandwidth, 5.2 GHz, was achieved for the device on MgO buffer layer on Si with a 2 nm thick NbN film. Functional devices based on NbN films of such thickness were fabricated for the first time due to an improvement of superconducting properties of NbN film deposited on MgO buffer layer on Si substrate.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harvard university
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 325
Permanent link to this record
 

 
Author Semenov, A. D.; Gousev, Y. P.; Nebosis, R. S.; Renk, K. F.; Yagoubov, P.; Voronov, B. M.; Gol’tsman, G. N.; Syomash, V. D.; Gershenzon, E. M.
Title Heterodyne detection of THz radiation with a superconducting hot‐electron bolometer mixer Type Journal Article
Year 1996 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 69 Issue 2 Pages (up) 260-262
Keywords NbN HEB mixers
Abstract We report on the use of a superconducting hot‐electron bolometer mixer for heterodyne detection of terahertz radiation. Radiation with a wavelength of 119 μm was coupled to the mixer, a NbN microbridge, by a hybrid quasioptical antenna consisting of an extended hyperhemispherical lens and a planar logarithmic spiral antenna. We found, at an intermediate frequency of 1.5 GHz, a system double side band noise temperature of ≊40 000 K and conversion losses of 25 dB. We also discuss the possibilities of further improvement of the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1610
Permanent link to this record
 

 
Author Bell, M.; Kaurova, N.; Divochiy, A.; Gol'tsman, G.; Bird, J.; Sergeev, A.; Verevkin, A.
Title On the nature of resistive transition in disordered superconducting nanowires Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages (up) 267-270
Keywords SSPD, SNSPD
Abstract Hot-electron single-photon counters based on long superconducting nanowires are starting to become popular in optical and infrared technologies due to their ultimately high sensitivity and very high response speed. We investigate intrinsic fluctuations in long NbN nanowires in the temperature range of 4.2 K-20 K, i.e. above and below the superconducting transition. These fluctuations are responsible for fluctuation resistivity and also determine the noise in practical devices. Measurements of the fluctuation resistivity were performed at low current densities and also in external magnetic fields up to 5 T. Above the BCS critical temperature T co the resistivity is well described by the Aslamazov-Larkin (AL) theory for two-dimensional samples. Below T co the measured resistivity is in excellent agreement with the Langer-Ambegaokar-McCumber-Halperin (LAMH) theory developed for one-dimensional superconductors. Despite that our nanowires of 100 nm width are two-dimensional with respect to the coherence length, our analysis shows that at relatively low current densities the one-dimensional LAMH mechanism based on thermally induced phase slip centers dominates over the two-dimensional mechanism related to unbinding of vortex-antivortex pairs below the Berezinskii-Kosterlitz-Thouless transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1247
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Karasik, B. S.; Svechnikov, S. I.; Gershenzon, E. M.; Ekström, H.; Kollberg E.
Title Noise temperature of NbN hot—electron quasioptical superconducting mixer in 200-700 GHz range Type Abstract
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (up) 268
Keywords NbN HEB mixers, noise temperature
Abstract The electron heating effect in superconducting films is becoming very attractive for the development of THz range mixers because of the absence of frequency limitations inherent in the bolometric mechanism. However, the evidence for the spectral dependence of the position of optimal operating point has been found recently for NbN thin film devices 1.2 • The effect is presumably attributed to the variation in the absorption of radiation depending on the frequency. Since the resistive state is not spatially uniform the coupling efficiency of the mixer device with radiation can be different for frequencies larger than Zeilh and those smaller than 2Alh (d is the effective superconducting gap in the resistive state). To study the effect more thoroughly we have investigated the noise temperature of quasioptical NbN mixer device with broken hue tapered slot antenna in the frequency range 200-700 GHz. The device consists of several (5-10) parallel strips 1 jim wide and 6-7 tun thick made from NbN film on Si0 2 -Si 3 N 4 -Si membrane. The strips are connected with the gold contacts of the slot-line antenna which serves both as bias and IF leads. We used backward wave oscillators as LO sources and a standard hot/cold load technique for noise temperature measurements. The frequency dependence of noise temperature is mainly determined by two factors: frequency properties of the antenna and frequency dependence of the NbN film impedance. To separate both factors we monitored the frequency dependence of the device responsivity in the detector mode at a higher temperature within the superconducting transition where the impedance of NbN film is close to its normal resistance. In this case the impedance of the device itself is frequency independent. The experimental results will be reported at the Symposium. 1. G. Gollsman, S. Jacobsson, H. EkstrOm, B. Karasik, E. Kollberg, and E. Gershenzon, “Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation,” Proc of the 5th Int. Symp. on Space Terahertz Technology, pp. 209-213a, May 10-12,1994. 2. B.S. Karasik, G.N. Gol i tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekstrom, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer,” presented at the ASC94, submitted to IEEE Trans. on Appl. Superconductivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1627
Permanent link to this record
 

 
Author Gershenzon, E.; Gershenzon, M. E.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Heating of quasiparticles in a superconducting film in the resistive state Type Journal Article
Year 1981 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 34 Issue 5 Pages (up) 268-271
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1716
Permanent link to this record
 

 
Author Ekström, H.; Karasik, B.; Kollberg, E.; Gol'tsman, G.; Gershenzon, E.
Title 350 GHz NbN hot electron bolometer mixer Type Conference Article
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (up) 269-283
Keywords NbN HEB mixers
Abstract Superconducting NbN hot-electron bolometer (HEB) mixer devices have been fabricated and measured at 350 GHz. The HEB is integrated with a double dipole antenna on an extended crystalline quartz hyper hemispherical substrate lens. Heterodyne measurement gave a -3 dB bandwidth, mainly determined by the electron- phonon interaction time, of about 680 and 1000 MHz for two different films with Tc = 8.5 and 11 K respectively. The measured DSB receiver noise temperature is around 3000 K at 800 MHz IF frequency. The main contribution to the output noise from the device is due to electron temperature fluctuations with the equivalent output noise temperature TFL-100 K. TH, has the same frequency dependence as the IF response. The contribution from Johnson noise is of the order of T. The RF coupling loss is estimated to be = 6 dB. The film with lower Tc, had an estimated intrinsic low-frequency conversion loss = 7 dB, while the other film had a conversion loss as high as 14 dB. The difference in intrinsic conversion loss is explained by less uniform absorption of radiation. Measurements of the small signal impedance shows a transition of the output impedance from the DC differential resistance Rd=dV/dI in the low frequency limit to the DC resistance R 0 =Uoff 0 in the bias point for frequencies above 3 GHz. We judge that the optimum shape of the IV-characteristic is more easily obtained at THz frequencies where the main restriction in performance should come from problems with the RF coupling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1628
Permanent link to this record
 

 
Author Kawamura, J.; Hunter, T. R.; Tong, C. Y. E.; Blundell, R.; Papa, D. C.; Patt, F.; Peters, W.; Wilson, T.; Henkel, C.; Goltsman, G.; Gershenzon, E.
Title Ground-based terahertz CO spectroscopy towards Orion Type Journal Article
Year 2002 Publication A&A Abbreviated Journal A&A
Volume 394 Issue 1 Pages (up) 271-274
Keywords HEB mixers, applications
Abstract Using a superconductive hot-electron bolometer heterodyne receiver on the 10-m Heinrich Hertz Telescope on Mount Graham, Arizona, we have obtained velocity-resolved 1.037 THz CO () spectra toward several positions along the Orion Molecular Cloud (OMC-1) ridge. We confirm the general results of prior observations of high-J CO lines that show that the high temperature, , high density molecular gas, , is quite extended, found along a ~ region centered on BN/KL. However, our observations have significantly improved angular resolution, and with a beam size of we are able to spatially and kinematically discriminate the emission originating in the extended quiescent ridge from the very strong and broadened emission originating in the compact molecular outflow. The ridge emission very close to the BN/KL region appears to originate from two distinct clouds along the line of sight with and ≈ . The former component dominates the emission to the south of BN/KL and the latter to the north, with a turnover point coincident with or near BN/KL. Our evidence precludes a simple rotation of the inner ridge and lends support to a model in which there are multiple molecular clouds along the line of sight towards the Orion ridge.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 322
Permanent link to this record
 

 
Author Bryerton, E.; Percy, R.; Bass, R.; Schultz, J.; Oluleye, O.; Lichtenberger, A.; Ediss, G. A.; Pan, S. K.; Goltsman, G. N.
Title Receiver measurements of pHEB beam lead mixers on 3-μm silicon Type Conference Article
Year 2005 Publication Proc. 30th IRMMW / 13th THz Abbreviated Journal Proc. 30th IRMMW / 13th THz
Volume Issue Pages (up) 271-272
Keywords
Abstract We report on receiver noise measurement results of phonon-cooled HEB beam lead mixers on 3 μm thick silicon. This type of ultra-thin mixer chip with integrated beam leads allows easy assembly into a block and holds great promise for array integration. Receiver measurements from 600-720 GHz are presented with a minimum noise temperature of 500 K at 666 GHz. These results verify the mixer performance of the SOI processing techniques allowing for further design and integration of SOI pHEB mixers in receivers operating above 1 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics
Notes Approved no
Call Number Serial 1460
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Kollberg, E.; Loudkov, D.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Gershenzon, E.
Title Local oscillator power requirement and saturation effects in NbN HEB mixers Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (up) 273-285
Keywords NbN HEB mixers, LO power, local oscillator power, saturation effect, dynamic range
Abstract The local oscillator power required for NbN hot-electron bolometric mixers (P LO ) was investigated with respect to mixer size, critical temperature and ambient temperature. P LO can be decreased by a factor of 10 as the mixer size decreases from 4×0.4 µm 2 to 0.6×0.13 µm 2 . For the smallest volume mixer the optimal local oscillator power was found to be 15 nW. We found that for such mixer no signal compression was observed up to an input signal of 2 nW which corresponds to an equivalent input load of 20,000 K. For a constant mixer volume, reduction of T c can decrease optimal local oscillator power at least by a factor of 2 without a deterioration of the receiver noise temperature. Bath temperature was found to have minor effect on the receiver characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor Jet Propulsion Laboratory, California Inst.it.u.t.e of Technology
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 318
Permanent link to this record