toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Mandel, L. openurl 
  Title Heterodyne detection of a weak light beam Type Journal Article
  Year 1966 Publication J. Opt. Society of America Abbreviated Journal  
  Volume 56 Issue 9 Pages (down) 1200-1206  
  Keywords detection, lasers, coherence  
  Abstract An analysis is made of the problem of detecting a weak light beam from a distant source in the presence of a background of much greater intensity, by the photoelectric heterodyne technique. In this method the incident light is superposed on the light beam from a local laser, whose frequency can be adjusted by a feedback arrangement so as to maximize a certain “beat note” in the output of the detector. With the aid of plausible assumptions it is shown that the effectiveness of the method is largely independent of the intensity of the background light, and of the fluctuation properties of the incident light. The key parameter is the number of photoelectrons released by the signal beam in a time comparable with its coherence time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes From [RpL 938] Approved no  
  Call Number Serial 1071  
Permanent link to this record
 

 
Author Kitaeva, G. K.; Kornienko, V. V.; Kuznetsov, K. A.; Pentin, I. V.; Smirnov, K. V.; Vakhtomin, Y. B. url  doi
openurl 
  Title Direct detection of the idler THz radiation generated by spontaneous parametric down-conversion Type Journal Article
  Year 2019 Publication Opt. Lett. Abbreviated Journal Opt. Lett.  
  Volume 44 Issue 5 Pages (down) 1198-1201  
  Keywords HEB applications  
  Abstract We study parametric down-conversion (PDC) of optical laser radiation in the strongly frequency non-degenerate regime which is promising for the generation of quantum-correlated pairs of extremely different spectral ranges, the optical and the terahertz (THz) ones. The possibility to detect tenuous THz-frequency photon fluxes generated under low-gain spontaneous PDC is demonstrated using a hot electron bolometer. Then experimental dependences of the THz radiation power on the detection angle and on the pump intensity are analyzed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0146-9592 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30821747 Approved no  
  Call Number Serial 1801  
Permanent link to this record
 

 
Author Cooper, L. N. openurl 
  Title Bound electron pairs in a degenerate fermi gas Type Journal Article
  Year 1956 Publication Phys. Rev. Abbreviated Journal Phys. Rev.  
  Volume 104 Issue 4 Pages (down) 1189-1190  
  Keywords BCS  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 899  
Permanent link to this record
 

 
Author Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. openurl 
  Title Theory of superconductivity Type Journal Article
  Year 1957 Publication Phys. Rev. Abbreviated Journal Phys. Rev.  
  Volume 108 Issue 5 Pages (down) 1175-1204  
  Keywords BCS  
  Abstract A theory of superconductivity is presented, based on the fact that the interaction between electrons resulting from virtual exchange of phonons is attractive when the energy difference between the electrons states involved is less than the phonon energy, â„<8f>ω. It is favorable to form a superconducting phase when this attractive interaction dominates the repulsive screened Coulomb interaction. The normal phase is described by the Bloch individual-particle model. The ground state of a superconductor, formed from a linear combination of normal state configurations in which electrons are virtually excited in pairs of opposite spin and momentum, is lower in energy than the normal state by amount proportional to an average (â„<8f>ω)2, consistent with the isotope effect. A mutually orthogonal set of excited states in one-to-one correspondence with those of the normal phase is obtained by specifying occupation of certain Bloch states and by using the rest to form a linear combination of virtual pair configurations. The theory yields a second-order phase transition and a Meissner effect in the form suggested by Pippard. Calculated values of specific heats and penetration depths and their temperature variation are in good agreement with experiment. There is an energy gap for individual-particle excitations which decreases from about 3.5kTc at T=0°K to zero at Tc. Tables of matrix elements of single-particle operators between the excited-state superconducting wave functions, useful for perturbation expansions and calculations of transition probabilities, are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 901  
Permanent link to this record
 

 
Author Rabanus, D.; Graf, U. U.; Philipp, M.; Ricken, O.; Stutzki, J.; Vowinkel, B.; Wiedner, M. C.; Walther, C.; Fischer, M.; Faist, J. openurl 
  Title Phase locking of a 1.5 terahertz quantum cascade laser and use as a local oscillator in a heterodyne HEB receiver Type Journal Article
  Year 2009 Publication Optics Express Abbreviated Journal  
  Volume 17 Issue 3 Pages (down) 1159-1168  
  Keywords QCL heterodyne, 300 uW at 1.5 THz, HEB mixer  
  Abstract We demonstrate for the first time the closure of an electronic phase lock loop for a continuous–wave quantum cascade laser (QCL) at 1.5 THz. The QCL is operated in a closed cycle cryo cooler. We achieved a frequency stability of better than 100 Hz, limited by the resolution bandwidth of the spectrum analyser. The PLL electronics make use of the intermediate frequency (IF) obtained from a hot electron bolometer (HEB) which is downconverted to a PLL IF of 125 MHz. The coarse selection of the longitudinal mode and the fine tuning is achieved via the bias voltage of the QCL. Within a QCL cavity mode, the free-running QCL shows frequency fluctuations of about 5 MHz, which the PLL circuit is able to control via the Stark–shift of the QCL gain material. Temperature dependent tuning is shown to be nonlinear, and of the order of -16 MHz/K. Additionally we have used the QCL as local oscillator (LO) to pump an HEB and perform, again for the first time at 1.5 THz, a heterodyne experiment, and obtain a receiver noise temperature of 1741 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 628  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: