toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bardeen, J.; Cooper, L. N.; Schrieffer, J. R. openurl 
  Title Theory of superconductivity Type Journal Article
  Year 1957 Publication Phys. Rev. Abbreviated Journal Phys. Rev.  
  Volume 108 Issue 5 Pages (down) 1175-1204  
  Keywords BCS  
  Abstract A theory of superconductivity is presented, based on the fact that the interaction between electrons resulting from virtual exchange of phonons is attractive when the energy difference between the electrons states involved is less than the phonon energy, â„<8f>ω. It is favorable to form a superconducting phase when this attractive interaction dominates the repulsive screened Coulomb interaction. The normal phase is described by the Bloch individual-particle model. The ground state of a superconductor, formed from a linear combination of normal state configurations in which electrons are virtually excited in pairs of opposite spin and momentum, is lower in energy than the normal state by amount proportional to an average (â„<8f>ω)2, consistent with the isotope effect. A mutually orthogonal set of excited states in one-to-one correspondence with those of the normal phase is obtained by specifying occupation of certain Bloch states and by using the rest to form a linear combination of virtual pair configurations. The theory yields a second-order phase transition and a Meissner effect in the form suggested by Pippard. Calculated values of specific heats and penetration depths and their temperature variation are in good agreement with experiment. There is an energy gap for individual-particle excitations which decreases from about 3.5kTc at T=0°K to zero at Tc. Tables of matrix elements of single-particle operators between the excited-state superconducting wave functions, useful for perturbation expansions and calculations of transition probabilities, are given.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 901  
Permanent link to this record
 

 
Author Pfleegor, R. L.; Mandel, L. openurl 
  Title Interference of independent photon beams Type Journal Article
  Year 1967 Publication Phys. Rev. Abbreviated Journal  
  Volume 159 Issue 5 Pages (down) 1084-1088  
  Keywords  
  Abstract Interference effects produced by the superposition of the light beams from two independent single-mode lasers have been investigated experimentally. It is found that interference takes place even under conditions in which the light intensities are so low that, with high probability, one photon is absorbed before the next one is emitted by one or the other source. Since the average number of registered photons per trial was only about 10, photon correlation techniques were required to demonstrate the interference. The interpretation of the experiment, and the question whether it demonstrates interference between two photons, are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes From [RpL 938] Approved no  
  Call Number Serial 1072  
Permanent link to this record
 

 
Author Matthias, B. T. openurl 
  Title Transition temperatures of superconductors Type Journal Article
  Year 1953 Publication Phys. Rev. Abbreviated Journal Phys. Rev.  
  Volume 92 Issue 4 Pages (down) 874-876  
  Keywords  
  Abstract Superconductivity has been found in a number of new compounds between the non-superconducting transition elements and nonmetals such as Si, Ge, and Te. These findings have suggested possible criteria for superconductivity in both elements and compounds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ phisix @ Serial 987  
Permanent link to this record
 

 
Author Semenov, A. D.; Nebosis, R. S.; Gousev, Yu. P.; Heusinger, M. A.; Renk, K. F. openurl 
  Title Analysis of the nonequilibrium photoresponse of superconducting films to pulsed radiation by use of a two-temperature model Type Journal Article
  Year 1995 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 52 Issue 1 Pages (down) 581-590  
  Keywords HEB, NbN phonon scecific heat, Cp  
  Abstract Photoresponse of a superconducting film in the resistive state to pulsed radiation has been studied in the framework of a model assuming that two different effective temperatures can be assigned to the quasiparticle and phonon nonequilibrium distributions. The coupled electron-phonon-substrate system is described by a system of time-dependent energy-balance differential equations for effective temperatures. An analytical solution of the system is given and calculated voltage transients are compared with experimental photoresponse signals taking into account the radiation pulse shape and the time resolution of the readout electronics. It is supposed that a resistive state (vortices, fluxons, network of intergrain junctions, hot spots, phase slip centers) provides an ultrafast connection between electron temperature changes and changes of the film resistance and thus plays a minor role in the temporal evolution of the response. In accordance with experimental observations a two-component response was revealed from simulations. The slower component corresponds to a bolometric mechanism while the fast component is connected with the relaxation of the electron temperature. Calculated photoresponse transients are presented for different ratios of the electron and phonon specific heat, radiation pulse durations and fluences, and frequency band passes of registration electronics. From the amplitude of the bolometric component we determine the radiation energy absorbed in a film. This enables us to reveal an intrinsic electron-phonon scattering time even if it is much shorter than the time resolution of readout electronics. We analyze experimental voltage transients for NbN, YBa2Cu3O7, and TlBa2Ca2Cu3O9 superconducting films and find the electron-phonon interaction times at the transition temperatures of 17, 2.5, and 1.8 ps, respectively. The values are in reasonable agreement with data of other experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 903  
Permanent link to this record
 

 
Author Usadel, Klaus D. doi  openurl
  Title Generalized diffusion equation for superconducting alloys Type Journal Article
  Year 1970 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 25 Issue 8 Pages (down) 507  
  Keywords  
  Abstract Eilenberger's transportlike equations for a superconductor of type II can be simplified very much in the dirty limit. In this limit a diffusionlike equation is derived which is the generalization of the de Gennes-Maki theory for dirty superconductors to arbitrary values of the order parameter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 920  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: