|   | 
Details
   web
Records
Author Verevkin, A. A.; Pearlman, A.; Slysz, W.; Zhang, J.; Sobolewski, R.; Chulkova, G.; Okunev, O.; Kouminov, P.; Drakinskij, V.; Smirnov, K.; Kaurova, N.; Voronov, B.; Gol’tsman, G.; Currie, M.
Title Ultrafast superconducting single-photon detectors for infrared wavelength quantum communications Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5105 Issue Pages (up) 160-170
Keywords NbN SSPD, SNSPD, applications, single-photon detector, quantum cryptography, quantum communications, superconducting devices
Abstract We have developed a new class of superconducting single-photon detectors (SSPDs) for ultrafast counting of infrared (IR) photons for secure quantum communications. The devices are operated on the quantum detection mechanism, based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The detectors are fabricated from 3.5-nm-thick NbN films and they operate at 4.2 K inside a closed-cycle refrigerator or liquid helium cryostat. Various continuous and pulsed laser sources have been used in our experiments, enabling us to determine the detector experimental quantum efficiency (QE) in the photon-counting mode, response time, time jitter, and dark counts. Our 3.5-nm-thick SSPDs reached QE above 15% for visible light photons and 5% at 1.3 – 1.5 μm infrared range. The measured real-time counting rate was above 2 GHz and was limited by the read-out electronics (intrinsic response time is <30 ps). The measured jitter was <18 ps, and the dark counting rate was <0.01 per second. The measured noise equivalent power (NEP) is 2 x 10-18 W/Hz1/2 at λ = 1.3 μm. In near-infrared range, in terms of the counting rate, jitter, dark counts, and overall sensitivity, the NbN SSPDs significantly outperform their semiconductor counterparts. An ultrafast quantum cryptography communication technology based on SSPDs is proposed and discussed.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Donkor, E.; Pirich, A.R.; Brandt, H.E.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Information and Computation
Notes Approved no
Call Number Serial 1514
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Zhang, J.; Verevkin, A.; Sobolewski, R.
Title Fabrication of nanostructured superconducting single-photon detectors Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 13 Issue 2 Pages (up) 192-195
Keywords NbN SSPD, SNSPD
Abstract Fabrication of NbN superconducting single-photon detectors, based on the hotspot effect is presented. The hotspot formation arises in an ultrathin and submicrometer-width superconductor stripe and, together with the supercurrent redistribution, leads to the resistive detector response upon absorption of a photon. The detector has a meander structure to maximally increase its active area and reach the highest detection efficiency. Main processing steps, leading to efficient devices, sensitive in 0.4-5 /spl mu/m wavelength range, are presented. The impact of various processing steps on the performance and operational parameters of our detectors is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1515
Permanent link to this record
 

 
Author Ryabchun, S.; Korneev, A.; Matvienko, V.; Smirnov, K.; Kouminov, P.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol’tsman, G. N.
Title Superconducting single photon detectors array based on hot electron phenomena Type Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (up) 242-247
Keywords NbN SSPD arrays, SNSPD
Abstract In this paper we propose to use time domain multiplexing for large format arrays of superconducting single photon detectors (SSPDs) of the terahertz, visible and infrared frequency ranges based on ultrathin superconducting NbN films. Effective realization of time domain multiplexing for SSPD arrays is possible due to a short electric pulse of the SSPD as response to radiation quantum absorption, picosecond jitter and extremely low noise equivalent power (NEP). We present experimental results of testing 2×2 arrays in the infrared waveband. The measured noise equivalent power in the infrared and expected for the terahertz waveband is 10 – 21 WHz -1/2 . The best quantum efficiency (QE) of SSPD is 50% at 1.3 µm wavelength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1493
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R.
Title Nano-structured superconducting single-photon detectors Type Journal Article
Year 2004 Publication Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal
Volume 520 Issue 1-3 Pages (up) 527-529
Keywords NbN SSPD, SNSPD
Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1495
Permanent link to this record
 

 
Author Kitaygorsky, J.; Zhang, J.; Verevkin, A.; Sergeev, A.; Korneev, A.; Matvienko, V.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Sobolewski, R.
Title Origin of dark counts in nanostructured NbN single-photon detectors Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages (up) 545-548
Keywords SSPD dark counts, SNSPD, dark counts rate
Abstract We present our study of dark counts in ultrathin (3.5 to 10 nm thick), narrow (120 to 170 nm wide) NbN superconducting stripes of different lengths. In experiments, where the stripe was completely isolated from the outside world and kept at temperature below the critical temperature Tc, we detected subnanosecond electrical pulses associated with the spontaneous appearance of the temporal resistive state. The resistive state manifested itself as generation of phase-slip centers (PSCs) in our two-dimensional superconducting stripes. Our analysis shows that not far from Tc, PSCs have a thermally activated nature. At lowest temperatures, far below Tc, they are created by quantum fluctuations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1057
Permanent link to this record