|   | 
Details
   web
Records
Author Tassin, Philippe; Koschny, Thomas; Kafesaki, Maria; Soukoulis, Costas M.
Title A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages (down) 259-264
Keywords fromIPMRAS
Abstract Recent advancements in metamaterials and plasmonics have promised a number of exciting applications, in particular at terahertz and optical frequencies. Unfortunately, the noble metals used in these photonic structures are not particularly good conductors at high frequencies, resulting in significant dissipative loss. Here, we address the question of what is a good conductor for metamaterials and plasmonics. For resonant metamaterials, we develop a figure-of-merit for conductors that allows for a straightforward classification of conducting materials according to the resulting dissipative loss in the metamaterial. Application of our method predicts that graphene and high-Tc superconductors are not viable alternatives for metals in metamaterials. We also provide an overview of a number of transition metals, alkali metals and transparent conducting oxides. For plasmonic systems, we predict that graphene and high-Tc superconductors cannot outperform gold as a platform for surface plasmon polaritons, because graphene has a smaller propagation length-to-wavelength ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 790
Permanent link to this record
 

 
Author Clerk, Aashish
Title Quantum phononics: To see a SAW Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue 4 Pages (down) 256-257
Keywords fromIPMRAS
Abstract Mechanical oscillations of microscopic resonators have recently been observed in the quantum regime. This idea could soon be extended from localized vibrations to travelling waves thanks to a sensitive probe of so-called surface acoustic waves.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 811
Permanent link to this record
 

 
Author Paiella, Roberto
Title Terahertz quantum cascade lasers: Going ultrafast Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue Pages (down) 253–255
Keywords fromIPMRAS
Abstract A new asynchronous coherent optical sampling method allows for the direct visualization of actively mode-locked quantum cascade laser pulses at terahertz wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 774
Permanent link to this record
 

 
Author Mineev, Vladimir P.
Title Superfluid helium: Order in disorder Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue Pages (down) 253–254
Keywords fromIPMRAS
Abstract Confining liquid 3He in porous silica aerogel prepared with strong anisotropy stabilizes a state of axial superfluidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 810
Permanent link to this record
 

 
Author Nozaki, Kengo; Shinya, Akihiko; Matsuo, Shinji; Suzaki, Yasumasa; Segawa, Toru; Sato, Tomonari; Kawaguchi, Yoshihiro; Takahashi, Ryo; Notomi, Masaya
Title Ultralow-power all-optical RAM based on nanocavities Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages (down) 248-252
Keywords fromIPMRAS
Abstract Optical random-access memory (o-RAM) has been regarded as one of the most difficult challenges in terms of replacing its various functionalities in electronic circuitry with their photonic counterparts. Nevertheless, it constitutes a key device in optical routing and processing. Here, we demonstrate that photonic crystal nanocavities with an ultrasmall buried heterostructure design can solve most of the problems encountered in previous o-RAMs. By taking advantage of the strong confinement of photons and carriers and allowing heat to escape efficiently, we have realized all-optical RAMs with a power consumption of only 30 nW, which is more than 300 times lower than the previous record, and have achieved continuous operation. We have also demonstrated their feasibility in multibit integration. This paves the way for constructing a low-power large-scale o-RAM system that can handle high-bit-rate optical signals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 786
Permanent link to this record
 

 
Author Shor, Peter W.
Title Quantum information theory: The bits don't add up Type Journal Article
Year 2009 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 5 Issue Pages (down) 247 - 248
Keywords fromIPMRAS
Abstract A counterexample to the 'additivity question', the most celebrated open problem in the mathematical theory of quantum information, casts doubt on the possibility of finding a simple expression for the information capacity of a quantum channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 800
Permanent link to this record
 

 
Author Hase, Muneaki; Katsuragawa, Masayuki; Constantinescu, Anca Monia; Petek, Hrvoje
Title Frequency comb generation at terahertz frequencies by coherent phonon excitation in silicon Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue Pages (down) 243–247
Keywords fromIPMRAS
Abstract High-order nonlinear light–matter interactions in gases enable the generation of X-ray and attosecond light pulses, metrology and spectroscopy1. Optical nonlinearities in solid-state materials are particularly interesting for combining optical and electronic functions for high-bandwidth information processing2. Third-order nonlinear optical processes in silicon have been used to process optical signals with bandwidths greater than 1 GHz (ref. 2). However, fundamental physical processes for a silicon-based optical modulator in the terahertz bandwidth range have not yet been explored. Here, we demonstrate ultrafast phononic modulation of the optical index of silicon by irradiation with intense few-cycle femtosecond pulses. The anisotropic reflectivity modulation by the resonant Raman susceptibility at the fundamental frequency of the longitudinal optical phonon of silicon (15.6 THz) generates a frequency comb up to seventh order. All-optical >100 THz frequency comb generation is realized by harnessing the coherent atomic motion of the silicon crystalline lattice at its highest mechanical frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 794
Permanent link to this record
 

 
Author Ulhaq, A.; Weiler, S.; Ulrich, S. M.; Roßbach, R.; Jetter, M.; Michler, P.
Title Cascaded single-photon emission from the Mollow triplet sidebands of a quantum dot Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages (down) 238-242
Keywords fromIPMRAS
Abstract Emission from a resonantly excited quantum emitter is a fascinating research topic within the field of quantum optics and is a useful source for different types of quantum light fields. The resonance spectrum consists of a single spectral line that develops into a triplet above saturation of the quantum emitter. The three closely spaced photon channels from the resonance fluorescence have different photon statistical signatures. We present a detailed photon statistics analysis of the resonance fluorescence emission triplet from a solid-state-based artificial atom, that is, a semiconductor quantum dot. The photon correlation measurements demonstrate both `single' and `cascaded' photon emission from the Mollow triplet sidebands. The bright and narrow sideband emission (5.9 × 106 photons per second into the first lens) can be conveniently frequency-tuned by laser detuning over 15 times its linewidth (Δv ~ 1.0 GHz). These unique properties make the Mollow triplet sideband emission a valuable light source for quantum light spectroscopy and quantum information applications, for example.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 788
Permanent link to this record
 

 
Author Usmani, Imam; Clausen, Christoph; Bussières, Félix; Sangouard, Nicolas; Afzelius, Mikael; Gisin, Nicolas
Title Heralded quantum entanglement between two crystals Type Journal Article
Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 6 Issue 4 Pages (down) 234-237
Keywords fromIPMRAS
Abstract Quantum networks must have the crucial ability to entangle quantum nodes. A prominent example is the quantum repeater, which allows the distance barrier of direct transmission of single photons to be overcome, provided remote quantum memories can be entangled in a heralded fashion. Here, we report the observation of heralded entanglement between two ensembles of rare-earth ions doped into separate crystals. A heralded single photon is sent through a 50/50 beamsplitter, creating a single-photon entangled state delocalized between two spatial modes. The quantum state of each mode is subsequently mapped onto a crystal, leading to an entangled state consisting of a single collective excitation delocalized between two crystals. This entanglement is revealed by mapping it back to optical modes and by estimating the concurrence of the retrieved light state. Our results highlight the potential of crystals doped with rare-earth ions for entangled quantum nodes and bring quantum networks based on solid-state resources one step closer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 793
Permanent link to this record
 

 
Author Brida, G.; Genovese, M.; Ruo Berchera, I.
Title Experimental realization of sub-shot-noise quantum imaging Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue 4 Pages (down) 227-230
Keywords fromIPMRAS
Abstract The properties of quantum states have led to the development of new technologies, ranging from quantum information to quantum metrology. A recent field of research to emerge is quantum imaging, which aims to overcome the limits of classical imaging by making use of the spatial properties of quantum states of light . In particular, quantum correlations between twin beams represent a fundamental resource for these studies. One of the most interesting proposed schemes takes advantage of the spatial quantum correlations between parametric down-conversion light beams to realize sub-shot-noise imaging of weak absorbing objects, leading ideally to noise-free imaging. Here, we present the first experimental realization of this scheme, showing its potential to achieve a larger signal-to-noise ratio than classical imaging methods. This work represents the starting point for this quantum technology, which we anticipate will have applications when there is a requirement for low-photon-flux illumination (for example for use with biological samples).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 771
Permanent link to this record