|   | 
Details
   web
Records
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M.
Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages (down) 448-453
Keywords NbN HEB mixers, applications
Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1526
Permanent link to this record
 

 
Author Semenov, Alexei; Richter, Heiko; Smirnov, Konstantin; Voronov, Boris; Gol'tsman, Gregory; Hübers, Heinz-Wilhelm
Title The development of terahertz superconducting hot-electron bolometric mixers Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages (down) 436-439
Keywords NbN HEB mixers
Abstract We present recent advances in the development of NbN hot-electron bolometric (HEB) mixers for flying terahertz heterodyne receivers. Three important issues have been addressed: the quality of the source NbN films, the effect of the bolometer size on the spectral properties of different planar feed antennas, and the local oscillator (LO) power required for optimal operation of the mixer. Studies of the NbN films with an atomic force microscope indicated a surface structure that may affect the performance of the smallest mixers. Measured spectral gain and noise temperature suggest that at frequencies above 2.5 THz the spiral feed provides better overall performance than the double-slot feed. Direct measurements of the optimal LO power support earlier estimates made in the framework of the uniform mixer model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 357
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W.
Title 1.6 THz heterodyne receiver for the far infrared space telescope Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages (down) 427-431
Keywords NbN HEB mixers, applications
Abstract A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1527
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G.
Title Improved NbN phonon cooled hot electron bolometer mixers Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages (down) 413-423
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance to Au pads. By adding either a 5 nm Nb or a 10 nm NbTiN layer between the Au and NbN, to preserve superconductivity in the NbN under the Au contact pad, superior noise temperatures have been obtained. Using DC I,V curves and resistive transitions in combination with process parameters we analyze the nature of these improved devices and determine interface transparencies.
Address
Corporate Author Thesis
Publisher Place of Publication Tucson, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 337
Permanent link to this record
 

 
Author Huebers, H.-W.; Schubert, J.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Schwaab, G. W.
Title NbN phonon-cooled hot-electron bolometer as a mixer for THz heterodyne receivers Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3828 Issue Pages (down) 410-416
Keywords NbN HEB mixers
Abstract We have investigated a phonon-cooled NbN hot electron bolometric (HEB) mixer in the frequency range from 0.7 THz to 5.2 THz. The device was a 3.5 nm thin film with an in- plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The measured DSB receiver noise temperatures are 1500 K, 2200 K, 2600 K, 2900 K, 4000 K, 5600 K and 8800 K. The sensitivity fluctuation, the long term stability, and the antenna pattern were measured and the suitability of the mixer for a practical heterodyne receiver is discussed.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Chamberlain, J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Spectroscopy and Applications II
Notes Approved no
Call Number Serial 1477
Permanent link to this record