| 
Citations
 | 
   web
Lobanov, Y. V., Vakhtomin, Y. B., Pentin, I. V., Rosental, V. A., Smirnov, K. V., Goltsman, G. N., et al. (2021). Time-resolved measurements of light–current characteristic and mode competition in pulsed THz quantum cascade laser. Optical Engineering, 60(8), 1–8.
toggle visibility
Rasulova, G. K., Pentin, I. V., Vakhtomin, Y. B., Smirnov, K. V., Khabibullin, R. A., Klimov, E. A., et al. (2020). Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime. J. Appl. Phys., 128(22), 224303 (1 to 11).
toggle visibility
Svechnikov, S. I., Finkel, M. I., Maslennikov, S. N., Vachtomin, Y. B., Smirnov, K. V., Seleznev, V. A., et al. (2006). Superconducting hot electron bolometer mixer for middle IR range. In Proc. 16th Int. Crimean Microwave and Telecommunication Technology (Vol. 2, pp. 686–687).
toggle visibility
Zinoni, C., Alloing, B., Li, L. H., Marsili, F., Fiore, A., Lunghi, L., et al. (2010). Erratum: “Single photon experiments at telecom wavelengths using nanowire superconducting detectors” [Appl. Phys. Lett. 91, 031106 (2007)]. Appl. Phys. Lett., 96(8), 089901.
toggle visibility
Zinoni, C., Alloing, B., Li, L. H., Marsili, F., Fiore, A., Lunghi, L., et al. (2007). Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors. Appl. Phys. Lett., 91(3), 031106 (1 to 3).
toggle visibility
Smirnov, K. V., Vachtomin, Y. B., Ozhegov, R. V., Pentin, I. V., Slivinskaya, E. V., Korneev, A. A., et al. (2008). Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography. In P. Tománek, D. Senderáková, & M. Hrabovský (Eds.), Proc. SPIE (Vol. 7138, 713827 (1 to 6)). Spie.
toggle visibility
Zinoni, C., Alloing, B., Li, L. H., Marsili, F., Fiore, A., Lunghi, L., et al. (2007). Single-photonics at telecom wavelengths using nanowire superconducting single photon detectors. In CLEO/QELS (QTuF6 (1 to 2)). Optical Society of America.
toggle visibility
Vachtomin, Y. B., Antipov, S. V., Maslennikov, S. N., Smirnov, K. V., Polyakov, S. L., Zhang, W., et al. (2006). Quasioptical hot electron bolometer mixers based on thin NBN films for terahertz region. In Proc. 16th Int. Crimean Microwave and Telecommunication Technology (Vol. 2, pp. 688–689).
toggle visibility
Morozov, D. V., Smirnov, K. V., Smirnov, A. V., Lyakhov, V. A., & Goltsman, G. N. (2005). A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure. Semicond., 39(9), 1082–1086.
toggle visibility
Maslennikov, S. N., Morozov, D. V., Ozhegov, R. V., Smirnov, K. V., Okunev, O. V., & Gol’tsman, G. N. (2004). Imaging system for submillimeter wave range based on AlGaAs/GaAs hot electron bolometer mixers. In Proc. 5-th MSMW (Vol. 2, pp. 558–560).
toggle visibility
Smirnov, K. V., Vachtomin, Y. B., Antipov, S. V., Maslennikov, S. N., Kaurova, N. S., Drakinsky, V. N., et al. (2003). Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz. In Proc. 14th Int. Symp. Space Terahertz Technol. (pp. 405–412).
toggle visibility
Vakhtomin, Y. B., Finkel, M. I., Antipov, S. V., Smirnov, K. V., Kaurova, N. S., Drakinskii, V. N., et al. (2003). The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer. J. of communications technol. & electronics, 48(6), 671–675.
toggle visibility
Gol’tsman, G. N., & Smirnov, K. V. (2001). Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures. Jetp Lett., 74(9), 474–479.
toggle visibility
Antipov, S. V., Svechnikov, S. I., Smirnov, K. V., Vakhtomin, Y. B., Finkel, M. I., Goltsman, G. N., et al. (2001). Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz. Physics of Vibrations, 9(4), 242–245.
toggle visibility
Smirnov, K. V., Ptitsina, N. G., Vakhtomin, Y. B., Verevkin, A. A., Gol’tsman, G. N., & Gershenzon, E. M. (2000). Energy relaxation of two-dimensional electrons in the quantum Hall effect regime. JETP Lett., 71(1), 31–34.
toggle visibility