toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Finkel, M.; Thierschmann, H.; Galatro, L.; Katan, A. J.; Thoen, D. J.; de Visser, P. J.; Spirito, M.; Klapwijk, T. M. url  doi
openurl 
  Title Performance of THz components based on microstrip PECVD SiNx technology Type Journal Article
  Year 2017 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 7 Issue 6 Pages 765-771  
  Keywords transmission line measurements, power transmission lines, dielectrics, couplers, submillimeter wave circuits, coplanar waveguides, micromechanical devices  
  Abstract We present a performance analysis of passive THz components based on Microstrip transmission lines with a 2-μmthin plasma-enhanced chemical vapor deposition grown silicon nitride (PECVD SiNX) dielectric layer. A set of thru-reflect-line calibration structures is used for basic transmission line characterizations. We obtain losses of 9 dB/mm at 300 GHz. Branchline hybrid couplers are realized that exhibit 2.5-dB insertion loss, 1-dB amplitude imbalance, and -26-dB isolation, in agreement with simulations. We use the measured center frequency to determine the dielectric constant of the PECVD SiN x , which yields 5.9. We estimate the wafer-to-wafer variations to be of the order of 1%. Directional couplers are presented which exhibit -12-dB transmission to the coupled port and -26 dB to the isolated port. For transmission lines with 5-μm-thin silicon nitride (SiN x ), we observe losses below 4 dB/mm. The thin SiN x dielectric membrane makes the THz components compatible with scanning probe microscopy cantilevers allowing the application of this technology in on-chip circuits of a THz near-field microscope.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1294  
Permanent link to this record
 

 
Author Kardakova, A. I.; Coumou, P. C. J. J.; Finkel, M. I.; Morozov, D. V.; An, P. P.; Goltsman, G. N.; Klapwijk, T. M. url  doi
openurl 
  Title Electron–phonon energy relaxation time in thin strongly disordered titanium nitride films Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 1-4  
  Keywords TiN MKID  
  Abstract We have measured the energy relaxation times from the electron bath to the phonon bath in strongly disordered TiN films grown by atomic layer deposition. The measured values of τ eph vary from 12 to 91 ns. Over a temperature range from 3.4 to 1.7 K, they follow T -3 temperature dependence, which are consistent with values of τ eph reported previously for sputtered TiN films. For the most disordered film, with an effective elastic mean free path of 0.35 nm, we find a faster relaxation and a stronger temperature dependence, which may be an additional indication of the influence of strong disorder on a superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1296  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M. url  openurl
  Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords SSPD  
  Abstract We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Duplicated as 1303 Approved no  
  Call Number Serial 1312  
Permanent link to this record
 

 
Author Korneeva, Y.; Vodolazov, D.; Florya, I.; Manova, N.; Smirnov, E.; Korneev, A.; Mikhailov, M.; Goltsman, G.; Klapwijk, T. M.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R. url  doi
openurl 
  Title Single photon detection in micron scale NbN and α-MoSi superconducting strips Type Conference Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 190 Issue Pages 04010 (1 to 2)  
  Keywords SSPD  
  Abstract We experimentally demonstrate the single photon detection in straight micrometer-wide NbN and α-MoSi bridges. Width of the bridges is 2 µm, while the wavelength of the photon changes from 408 to 1550 nm and critical current exceeds 50% of the depairing current. Obtained results offer the alternative route for design of detectors without resonator and meander structure and indirectly confirm vortex assisted mechanism of single photon detection.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1319  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; de Visser, P. J.; Yates, S. J. C.; Bueno, J.; Jansen, R. M. J.; Endo, A.; Thoen, D. J.; Baryshev, A. M.; Ferrari, L.; Klapwijk, T. M. url  openurl
  Title Large format, background limited arrays of kinetic inductance detectors for sub-mm astronomy Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 64  
  Keywords KID  
  Abstract Kinetic Inductance detectors have held a promise for the last decade to enable very large arrays, in excess of 10.000 pixels, with background limited sensitivity for ground- and Space Based sub-mm observatories. First we present the development of the detector chips of the A-MKID instrument: These chips contain up to 5400 detector pixel divided over up to 5 readout lines for the 350 GHz and 850 GHz atmospheric windows. The individual detectors are lens antenna coupled KIDs made of NbTiN and Aluminium that reach photon noise limited sensitivity at sky loading levels in excess of a few fW per pixel using either phase readout or amplitude readout. The ability to use phase readout is crucial as it reduces the requirements on the readout electronics of the instrument. Cross coupling between the KID resonators was mitigated by a combination of numerical simulations and a suitable position encoding of the readout resonance frequencies of the individual pixels. Beam pattern measurements are performed to demonstrate the absence of any cross talk due to resonator- resonator cross coupling. Second we present experiments on individual lens-antenna coupled detectors at 1.5 THz that are made out of aluminium. With these devices we have observed, as a function of the irradiated power at 1.5 THz, the crossover from photon noise limited performance to detector-limited performance at loading powers less than 0.1 fW. In the latter limit the device is limited by intrinsic fluctuations in the Cooper pair and quasiparticle number, i.e. Generation-Recombination noise. This results in a sensitivity corresponding to a NEP = 3.8·10 -19 W/√(Hz).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN (down) Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1360  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: