|   | 
Details
   web
Records
Author Semenov, A.; Richter, H.; Hübers, H.-W.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title Development of terahertz superconducting hot-electron bolometer mixers Type Conference Article
Year 2003 Publication Proc. 6th European Conf. Appl. Supercond. Abbreviated Journal Proc. 6th European Conf. Appl. Supercond.
Volume 181 Issue Pages 2960-2965
Keywords NbN HEB mixers
Abstract We present recent results of the development of phonon cooled hot-electron bolometric (HEB) mixers for airborne and balloon borne terahertz heterodyne receivers. Three iomportant issues have been addresses: the quality of NbN films the HEB mixers were made from, the spectral properties of the HEB mixers and the local oscillator power required for optical operation. Studies with an atomic force microscope indicate, that the performance of the HEB mixer might have been effected by the microstructure of the NbN film. Antenna gain and noise temperature were investigated at terahertz frequencies for a HEB embedded in either log-spiral or twin-slot feed antenna. Comparison suggests that at frequencies above 3 THz the spiral feed provides better overall performance. At 1.6 THz, a power of 2.5 µW was required from the local oscillator for optimal operation of the HEB mixer.
Address Sorrento, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 0750309814, 978-0750309813 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1505
Permanent link to this record
 

 
Author Blundell, R.; Kawamura, J. H.; Tong, C. E.; Papa, D. C.; Hunter, T. R.; Gol’tsman, G. N.; Cherednichenko, S. I.; Voronov, B. M.; Gershenzon, E. M.
Title A hot-electron bolometer mixer receiver for the 680-830 GHz frequency range Type Conference Article
Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 18-20
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver designed to operate in the partially transparent atmospheric windows centered on 680 and 830 GHz. The receiver incorporates a niobium nitride thin film, cooled to 4.2 K, as the phonon-cooled hot-electron mixer element. The double sideband receiver noise, measured over the frequency range 680-830 GHz, is typically 700-1300 K. The instantaneous output bandwidth of the receiver is 600 MHz. This receiver has recently been used at the SubMillimeter Telescope, jointly operated by the Steward Observatory and the Max Planck Institute for Radioastronomy, for observations of the neutral carbon and CO spectral lines at 810 GHz and at 806 and 691 GHz respectively. Laboratory measurements on a second mixer in the same test receiver have yielded extended high frequency performance to 1 THz.
Address Leeds, UK
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) 0-7803-4903-2 Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1581
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages S224-S228
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance between the bolometer itself and the contact structure. Using a combination of in situ cleaning of the NbN film and the use of an additional superconducting interlayer of a 10 nm NbTiN layer between the Au of the contact structure and the NbN film superior noise temperatures have been obtained as low as 950 K at 2.5 THz and 750 K at 1.9 THz. Here we address in detail the DC characterization of these devices, the interface transparencies between the bolometers and the contacts and the consequences of these factors on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN (down) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 558
Permanent link to this record
 

 
Author Финкель, М. И.; Масленников, С. Н.; Гольцман, Г. Н.
Title Концепция приёмного комплекса космического радиотелескопа «Миллиметрон» Type Journal Article
Year 2007 Publication Известия высших учебных заведений. Радиофизика Abbreviated Journal
Volume 50 Issue 10-11 Pages 924-934
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN (down) Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ mix_review_2007_rus Serial 410
Permanent link to this record
 

 
Author Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N.
Title The concept of the receiving complex for the “Millimetron” space radio telescope Type Journal Article
Year 2007 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 50 Issue 10-11 Pages 837-846
Keywords HEB, applications, Millimetron, VLBI
Abstract We consider the current status of research in the development of a submillimeter and far-infrared receiving instrument and propose promising solutions for the receivers of the spaceborne telescope “Millimetron,” which allow one to realize comprehensively the opportunities given by this international project administrated by the Astrospace Center of the P. N. Lebedev Physical Institute of the Russian Academy of Sciences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN (down) Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 411
Permanent link to this record