toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ozhegov, R. V.; Gorshkov, K. N.; Vachtomin, Y. B.; Smirnov, K. V.; Finkel, M. I.; Goltsman, G. N.; Kiselev, O. S.; Kinev, N. V.; Filippenko, L. V.; Koshelets, V. P. url  doi
openurl 
  Title Terahertz imaging system based on superconducting heterodyne integrated receiver Type Conference Article
  Year 2014 Publication Proc. THz and Security Applications Abbreviated Journal Proc. THz and Security Applications  
  Volume Issue Pages 113-125  
  Keywords SIS mixer, SIR, THz imaging  
  Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Netherlands Place of Publication Dordrecht Editor Corsi, C.; Sizov, F.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 978-94-017-8828-1 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1368  
Permanent link to this record
 

 
Author Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N. url  doi
openurl 
  Title Thermal properties of NbN single-photon detectors Type Journal Article
  Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 10 Issue 6 Pages 064063 (1 to 8)  
  Keywords NbN SSPD, SNSPD  
  Abstract We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1226  
Permanent link to this record
 

 
Author Vorobyov, V. V.; Kazakov, A. Y.; Soshenko, V. V.; Korneev, A. A.; Shalaginov, M. Y.; Bolshedvorskii, S. V.; Sorokin, V. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Voronov, B. M.; Shalaev, V. M.; Akimov, A. V.; Goltsman, G. N. url  doi
openurl 
  Title Superconducting detector for visible and near-infrared quantum emitters [Invited] Type Journal Article
  Year 2017 Publication Opt. Mater. Express Abbreviated Journal Opt. Mater. Express  
  Volume 7 Issue 2 Pages 513-526  
  Keywords SSPD, SNSPD  
  Abstract Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500–1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2159-3930 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1234  
Permanent link to this record
 

 
Author Lobanov, Y. V.; Vakhtomin, Y. B.; Pentin, I. V.; Khabibullin, R. A.; Shchavruk, N. V.; Smirnov, K. V.; Silaev, A. A. url  doi
openurl 
  Title Characterization of the THz quantum cascade laser using fast superconducting hot electron bolometer Type Journal Article
  Year 2018 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 195 Issue Pages 04004 (1 to 2)  
  Keywords NbN HEB, QCL  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 2100-014X ISBN Medium  
  Area Expedition Conference 3rd International Conference “Terahertz and Microwave Radiation: Generation, Detection and Applications” (TERA-2018)  
  Notes Approved no  
  Call Number Serial 1808  
Permanent link to this record
 

 
Author Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Zolotov, P. I.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V. url  doi
openurl 
  Title Influence of deposited material energy on superconducting properties of the WSi films Type Conference Article
  Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.  
  Volume 781 Issue Pages 012013 (1 to 6)  
  Keywords WSi SSPD, SNSPD  
  Abstract WSi thin films have the advantages for creating SNSPDs with a large active area or array of detectors on a single substrate due to the amorphous structure. The superconducting properties of ultrathin WSi films substantially depends on their structure and thickness as the NbN films. Scientific groups investigating WSi films mainly focused only on changes of their thickness and the ratio of the components on the substrate at room temperature. This paper presents experiments to determine the effect of the bias potential on the substrate, the temperature of the substrate, and the peak power of pulsed magnetron sputtering, which is the equivalent of ionization, a tungsten target, on the surface resistance and superconducting properties of the WSi ultrathin films. The negative effect of the substrate temperature and the positive effect of the bias potential and the ionization coefficient (peak current) allow one to choose the best WSi films formation mode for SNSPD: substrate temperature 297 K, bias potential -60 V, and peak current 3.5 A.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1757-899X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1798  
Permanent link to this record
 

 
Author Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V. url  doi
openurl 
  Title Superconducting detector of IR single-photons based on thin WSi films Type Conference Article
  Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 737 Issue Pages 012032  
  Keywords WSi SSPD, SNSPD, NEP  
  Abstract We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors' SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1235  
Permanent link to this record
 

 
Author Zolotov, P. I.; Divochiy, A. V.; Vakhtomin, Y. B.; Lubenchenko, A. V.; Morozov, P. V.; Shurkaeva, I. V.; Smirnov, K. V. url  doi
openurl 
  Title Influence of sputtering parameters on the main characteristics of ultra-thin vanadium nitride films Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051030  
  Keywords SSPD, SNSPD, VN  
  Abstract We researched the relation between deposition and ultra-thin VN films parameters. To conduct the experimental study we varied substrate temperature, Ar and N2 partial pressures and deposition rate. The study allowed us to obtain the films with close to the bulk values transition temperatures and implement such samples in order to fabricate superconducting single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1228  
Permanent link to this record
 

 
Author Romanov, N. R.; Zolotov, P. I.; Vakhtomin, Y. B.; Divochiy, A. V.; Smirnov, K. V. url  doi
openurl 
  Title Electron diffusivity measurements of VN superconducting single-photon detectors Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051032  
  Keywords SSPD, SNSPD, VN  
  Abstract The research of ultrathin vanadium nitride (VN) films as a promising candidate for superconducting single-photon detectors (SSPD) is presented. The electron diffusivity measurements are performed for such devices. Devices that were fabricated out from 9.9 nm films had diffusivity coefficient of 0.41 cm2/s and from 5.4 nm – 0.54 cm2/s. Obtained values are similar to other typical SSPD materials. The diffusivity that increases along with decreasing of the film thickness is expected to allow fabrication of the devices with improved characteristics. Fabricated VN SSPDs showed prominent single-photon response in the range 0.9-1.55 µm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1229  
Permanent link to this record
 

 
Author Zolotov, P. I.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Seleznev, V. A.; Smirnov, K. V. url  doi
openurl 
  Title Development of high-effective superconducting single-photon detectors aimed for mid-IR spectrum range Type Conference Article
  Year 2017 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 917 Issue Pages 062037  
  Keywords NbN SSPD, SNSPD  
  Abstract We report on development of superconducting single-photon detectors (SSPD) with high intrinsic quantum efficiency in the wavelength range 1.31 – 3.3 μm. By optimization of the NbN film thickness and its compound, we managed to improve detection efficiency of the detectors in the range up to 3.3 μm. Optimized devices showed intrinsic quantum efficiencies as high as 10% at mid-IR range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1233  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Smirnov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.; Divochiy, A. V.; Goltsman, G. N. url  isbn
openurl 
  Title Ultrafast superconducting bolometer receivers for terahertz applications Type Abstract
  Year 2009 Publication Proc. PIERS Abbreviated Journal Proc. PIERS  
  Volume Issue Pages 867  
  Keywords HEB  
  Abstract The research by the group of Moscow State Pedagogical University into the hot-electron phenomena in thin superconducting films has led to the development of new types of detectors and their use both in fundamental and applied studies. In this paper, we present the results of testing the terahertz HEB receiver systems based on ultrathin (∼ 4 nm) NbN and MoRe detectors with a response time of 50 ps and 1 ns, respectively. We have developed three types of devices which differ in the way a terahertz signal is coupled to the detector and cover the following ranges: 0.3–3 THz, 0.1–30 THz and 25–70 THz. In the case of the receiving system optimized for 0.3–3 THz, the sensitive element (a strip of asuperconductor with planar dimensions of 0.2μm (length) by 1.7μm (width)) was integrated witha planar broadband log-spiral antenna. For additional focusing ofthe incident radiation a silicon hyperhemispherical lens was used. For the 0.1–30 THz receivingsystem, the sensitive element was patterned as parallel strips(2μm wide each) filling an area of 500×500μm2with a filling factor of 0.5. In the receivingsystem of this type we used direct coupling of the incident radiation to the sensitive element. Inthe 25–70 THz range (detector type 2/2a in Table 1) we used a square-shaped superconductingdetector with planar dimensions of 10×10μm2. Incident radiation was coupled to the detectorwith the use of a germanium hyperhemispherical lens.The response time of the above receiving systems is determined by the cooling rate of the hotelectrons in the film. That depends on the electron-phonon interaction time, which is less forultrathin NbN than in MoRe.  
  Address Moscow, Russia  
  Corporate Author Thesis  
  Publisher The Electromagnetics Academy Place of Publication 777 Concord Avenue, Suite 207 Cambridge, MA 02138 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1559-9450 ISBN 978-1-934142-09-7 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ ozhegovultrafast Serial 1022  
Permanent link to this record
 

 
Author Antipov, S. V.; Svechnikov, S. I.; Smirnov, K. V.; Vakhtomin, Y. B.; Finkel, M. I.; Goltsman, G. N.; Gershenzon, E. M. url  openurl
  Title Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz Type Journal Article
  Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations  
  Volume 9 Issue 4 Pages 242-245  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1069-1227 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1550  
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N. url  openurl
  Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
  Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics  
  Volume 48 Issue 6 Pages 671-675  
  Keywords NbN HEB mixers  
  Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.  
  Address  
  Corporate Author Thesis  
  Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1064-2269 ISBN Medium  
  Area Expedition Conference  
  Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no  
  Call Number Vakhtomin2003 Serial 1522  
Permanent link to this record
 

 
Author Smirnov, A. V.; Karmantsov, M. S.; Smirnov, K. V.; Vakhtomin, Y. B.; Masterov, D. V.; Tarkhov, M. A.; Pavlov, S. A.; Parafin, A. E. url  doi
openurl 
  Title Terahertz response of thin-film YBCO bolometers Type Journal Article
  Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.  
  Volume 57 Issue 12 Pages 1716-1719  
  Keywords YBCO HEB  
  Abstract The bolometric response of high-temperature thin-film YBCO superconducting detectors to an electromagnetic radiation with a frequency of 2.5 THz is measured for the first time. The minimum value of the noise-equivalent power of the detectors is 3.5 × 10−9 W/Hz−−−√. The feasibility of further increasing the sensitivity of the detectors is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1063-7842 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1817  
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I. url  doi
openurl 
  Title Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons Type Journal Article
  Year 2010 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 44 Issue 11 Pages 1427-1429  
  Keywords 2DEG, AlGaAs/GaAs heterostructures mixers  
  Abstract The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dB ∝ n −0.5 s due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Полоса и потери преобразования полупроводникового смесителя с фононным каналом охлаждения двумерных электронов Approved no  
  Call Number Serial 1216  
Permanent link to this record
 

 
Author Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N. url  doi
openurl 
  Title A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure Type Journal Article
  Year 2005 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 39 Issue 9 Pages 1082-1086  
  Keywords 2D electron gas, AlGaAs/GaAs heterostructures, mixers  
  Abstract Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1463  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: