|   | 
Details
   web
Records
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K.
Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
Year 2019 Publication J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B
Volume 36 Issue 3 Pages B20
Keywords NbN PNR SSPD, SNSPD
Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0740-3224 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1225
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M.
Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages 448-453
Keywords NbN HEB mixers, applications
Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1526
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Divochiy, A.; Minaeva, O.; Tarkhov, M.; Kaurova, N.; Seleznev, V.; Voronov, B.; Okunev, O.; Antipov, A.; Smirnov, K.; Vachtomin, Yu.; Milostnaya, I.; Chulkova, G.
Title Ultrafast superconducting single-photon detector Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 15 Pages 1670-1680
Keywords SSPD, SNSPD
Abstract The state-of-the-art of the NbN nanowire superconducting single-photon detector technology (SSPD) is presented. The SSPDs exhibit excellent performance at 2 K temperature: 30% quantum efficiency from visible to infrared, negligible dark count rate, single-photon sensitivity up to 5.6 µm. The recent achievements in the development of GHz counting rate devices with photon-number resolving capability is presented.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 607
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R.
Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
Year 2007 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 54 Issue 2-3 Pages 315-326
Keywords NbN SSPD, SNSPD
Abstract We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1434
Permanent link to this record
 

 
Author Verevkin, A.; Pearlman, A.; Slysz, W.; Zhang, J.; Currie, M.; Korneev, A.; Chulkova, G.; Okunev, O.; Kouminov, P.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Sobolewski, R.
Title Ultrafast superconducting single-photon detectors for near-infrared-wavelength quantum communications Type Journal Article
Year 2004 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 51 Issue 9-10 Pages 1447-1458
Keywords NbN SSPD, SNSPD
Abstract The paper reports progress on the design and development of niobium-nitride, superconducting single-photon detectors (SSPDs) for ultrafast counting of near-infrared photons for secure quantum communications. The SSPDs operate in the quantum detection mode, based on photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-width superconducting stripe. The devices are fabricated from 3.5 nm thick NbN films and kept at cryogenic (liquid helium) temperatures inside a cryostat. The detector experimental quantum efficiency in the photon-counting mode reaches above 20% in the visible radiation range and up to 10% at the 1.3–1.55 μn infrared range. The dark counts are below 0.01 per second. The measured real-time counting rate is above 2 GHz and is limited by readout electronics (the intrinsic response time is below 30 ps). The SSPD jitter is below 18 ps, and the best-measured value of the noise-equivalent power (NEP) is 2 × 10−18 W/Hz1/2. at 1.3 μm. In terms of photon-counting efficiency and speed, these NbN SSPDs significantly outperform semiconductor avalanche photodiodes and photomultipliers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1488
Permanent link to this record
 

 
Author Korneeva, Y. P.; Mikhailov, M. Y.; Pershin, Y. P.; Manova, N. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Korneev, A. A.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Y.; Goltsman, G. N.
Title Superconducting single-photon detector made of MoSi film Type Journal Article
Year 2014 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 27 Issue 9 Pages 095012
Keywords SSPD, SNSPD
Abstract We fabricated and characterized nanowire superconducting single-photon detectors made of 4 nm thick amorphous Mox Si1−x films. At 1.7 K the best devices exhibit a detection efficiency (DE) up to 18% at 1.2 $\mu {\rm m}$ wavelength of unpolarized light, a characteristic response time of about 6 ns and timing jitter of 120 ps. The DE was studied in wavelength range from 650 nm to 2500 nm. At wavelengths below 1200 nm these detectors reach their maximum DE limited by photon absorption in the thin MoSi film.
Address
Corporate Author Thesis
Publisher IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ korneeva2014superconducting Serial 1044
Permanent link to this record
 

 
Author Smirnov, K.; Divochiy, A.; Vakhtomin, Y.; Morozov, P.; Zolotov, P.; Antipov, A.; Seleznev, V.
Title NbN single-photon detectors with saturated dependence of quantum efficiency Type Journal Article
Year 2018 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 31 Issue 3 Pages 035011 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of Rs300/Rs20. The decreasing of Rs300/Rs20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at Ib/Ic ~ 0.8 and wavelength 1310 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1232
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 15 Issue 12 Pages 1689-1692
Keywords NbN SSPD, SNSPD, QE, jitter, dark counts
Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1533
Permanent link to this record
 

 
Author Smirnov, K.; Moshkova, M.; Antipov, A.; Morozov, P.; Vakhtomin, Y.
Title The cascade switching of the photon number resolving superconducting single-photon detectors Type Journal Article
Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 31 Issue 2 Pages 1-4
Keywords PNR SSPD, SNSPD
Abstract In this article, present the first detailed study of cascade switching in superconducting photon number resolving detectors. The detectors were made in the form of four parallel nanowires, coupled with the single-mode optical fiber and mounted into a closed-cycle refrigerator with a temperature of 2.1 K. We found out the value of additional false pulses (N cas.sw. ) appearing due to cascade switching and showed that it is possible to set up the detector bias current that corresponds to a high level of the detection efficiency and a low level of N cas.sw. simultaneously. We reached the detection efficiency of 60% and N cas.sw. = 0.3%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1796
Permanent link to this record
 

 
Author Glejm, A. V.; Anisimov, A. A.; Asnis, L. N.; Vakhtomin, Yu. B.; Divochiy, A. V.; Egorov, V. I.; Kovalyuk, V. V.; Korneev, A. A.; Kynev, S. M.; Nazarov, Yu. V.; Ozhegov, R. V.; Rupasov, A. V.; Smirnov, K. V.; Smirnov, M. A.; Goltsman, G. N.; Kozlov, S. A.
Title Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s Type Journal Article
Year 2014 Publication Bulletin of the Russian Academy of Sciences. Physics Abbreviated Journal
Volume 78 Issue 3 Pages 171-175
Keywords SSPD, SNSPD, applications
Abstract An experimental demonstration of a subcarrier-wave quantum cryptography system with superconducting single-photon detectors (SSPDs) that distributes a secure key in a single-mode fiber at distance of 25 km with a bit rate of 800 kbit/s, a distance of 100 km with a bit rate of 19 kbit/s, and a distance of 200 km with a bit rate of 0.18 kbit/s is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1062-8738 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 940
Permanent link to this record