toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shurakov, A.; Tong, Cheuk-yu E.; Grimes, P.; Blundell, R.; Golt'sman, G. openurl 
  Title A microwave reflection readout scheme for hot electron bolometric direct detector Type Journal Article
  Year 2015 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 5 Issue Pages 81-84  
  Keywords HEB detectors  
  Abstract In this paper, we propose and present data from a fast THz detector based on the repurpose of hot electron bolometer mixers (HEB) fabricated from superconducting NbN thinfilm. This detector is essentially a traditional NbN bolometer element that operates under the influence of a microwave pump. The in-jected microwave power serves the dual purpose of enhancing the detector sensitivity and reading out the impedance changes of the device in response to incidentTHz radiation. We have measured an optical Noise Equivalent Power of 4 pW/ Hz for our detector at a bath temperature of 4.2 K. The measurement frequency was 0.83 THz and the modulation frequency was 1.48 kHz. The readout

scheme is versatile and facilitates both high-speed operation as well as multi-pixel applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 950  
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Finkel, M.; Maslennikov, S.; Semenov, A.; Voronov, B. M.; Rodin, A. V.; Klapwijk, T. M.; Gol'tsman, G. N. doi  openurl
  Title NbN hot-electron-bolometer mixer for operation in the near-IR frequency range Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300704 (1 to 4)  
  Keywords HEB mixer, IR, optical antenna  
  Abstract Traditionally, hot-electron-bolometer (HEB) mixers are employed for THz and “super-THz” heterodyne detection. To explore the near-IR spectral range, we propose a fiber-coupled NbN film based HEB mixer. To enhance the incident-light absorption, a quasi-antenna consisting of a set of parallel stripes of gold is used. To study the antenna effect on the mixer performance, we have experimentally studied a set of devices with different size of the Au stripe and spacing between the neighboring stripes. With use of the well-known isotherm technique we have estimated the absorption efficiency of the mixer, and the maximum efficiency has been observed for devices with the smallest pitch of the alternating NbN and NbN-Au stripes. Also, a proper alignment of the incident Eâƒ<2014>-field with respect to the stripes allows us to improve the coupling further. Studying IV-characteristics of the mixer under differently-aligned Eâƒ<2014>-field of the incident radiation, we have noticed a difference in their shape. This observation suggests that a difference exists in the way the two waves with orthogonal polarizations parallel and perpendicular Eâƒ<2014>-field to the stripes heat the electrons in the HEB mixer. The latter results in a variation in the electron temperature distribution over the HEB device irradiated by the two waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 952  
Permanent link to this record
 

 
Author Seliverstov, S.; Maslennikov, S.; Ryabchun, S.; Finkel, M.; Klapwijk, T. M.; Kaurova, N.; Vachtomin, Yu.; Smirnov, K.; Voronov, B.; Goltsman, G. doi  openurl
  Title Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300304  
  Keywords HEB detector responsivity, HEB model, numerical calculations, numerical model  
  Abstract We characterize superconducting antenna-coupled hot-electron bolometers for direct detection of terahertz radiation operating at a temperature of 9.0 K. The estimated value of responsivity obtained from lumped-element theory is strongly different from the measured one. A numerical calculation of the detector responsivity is developed, using the Euler method, applied to the system of heat balance equations written in recurrent form. This distributed element model takes into account the effect of nonuniform heating of the detector along its length and provides results that are in better agreement with the experiment. At a signal frequency of 2.5 THz, the measured value of the optical detector noise equivalent power is 2.0 × 10-13 W · Hz-0.5. The value of the bolometer time constant is 35 ps. The corresponding energy resolution is about 3 aJ. This detector has a sensitivity similar to that of the state-of-the-art sub-millimeter detectors operating at accessible cryogenic temperatures, but with a response time several orders of magnitude shorter.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 953  
Permanent link to this record
 

 
Author Maslennikov, S. url  openurl
  Title RF heating efficiency of the terahertz superconducting hot-electron bolometer Type Journal Article
  Year 2014 Publication arXiv Abbreviated Journal arXiv  
  Volume 1404.5276 Issue Pages 1-4  
  Keywords superconducting hot-electron bolometer mixer, HEB, NbN, distributed model, HEB model, HEB mixer model, heat balance equa-tions, conversion gain, RF heating efficiency, noise temperature, simulation, Euler method  
  Abstract We report results of the numerical solution by the Euler method of the system of heat balance equations written in recurrent form for the superconducting hot-electron bolometer (HEB) embedded in an electrical circuit. By taking into account the dependence of the HEB resistance on the transport current we have been able to calculate rigorously the RF heating efficiency, absorbed local oscillator (LO) power and conversion gain of the HEB mixer. We show that the calculated conversion gai nis in excellent agreement with the experimental results, and that the substitution of the calculated RF heating efficiency and absorbed LO power into the expressions for the conversion gain and noise temperature given by the analytical small-signal model of the HEB yields excellent agreement with the corresponding measured values  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 954  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gershenzon, M. E.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V. url  openurl
  Title Heating of electrons in a superconductor in the resistive state by electromagnetic radiation Type Journal Article
  Year 1984 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP  
  Volume 59 Issue 2 Pages 442-450  
  Keywords Nb HEB  
  Abstract The effect of heating of electrons relative to phonons is observed and investigated in a superconducting film that is made resistive by current and by an external magnetic field. The effect is manifested by an increase of the film resistance under the influence of the electromagnetic radiation, and is not selective in the frequency band 10^10-10^15 Hz. The independence of the effect of frequency under conditions of strong scattering by static defects is attributed to the decisive role of electron-electron collisions in the distribution function. The experimentally obtained characteristic time of resistance variation near the superconducting transition corresponds to the relaxation time of the order parameter, while at lower temperatures and fields it corresponds to the time of the inelastic electron-phonon interaction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ phisix @ Serial 983  
Permanent link to this record
 

 
Author Palma, F.; Teppe, F.; Fatimy, A. E.; Green, R.; Xu, J.; Vachontin, Y.; Tredicucci, A.; Goltsman, G.; Knap, W. url  doi
openurl 
  Title THz communication system based on a THz quantum cascade laser and a hot electron bolometer Type Conference Article
  Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves  
  Volume Issue Pages 11623798 (1 to 2)  
  Keywords QCL, HEB detector  
  Abstract We present the experimental study of the direct emission – detection system based on the THz Quantum Cascade Laser as a source and Hot Electron Bolometer (HEB) detector – in view of its application as an optical communication system. We show that the system can efficiently transmit the QCL Terahertz pulses. We estimate the maximal modulation speed of the system to be about several GHz and show that it is limited only by the QCL pulse power supply, detector amplifier and connection line/wires parameters.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1391  
Permanent link to this record
 

 
Author Titova, N; Kardakova, A.; Tovpeko, N; Ryabchun, S.; Mandal, S.; Morozov, D.; Klemencic, G. M.; Giblin, S.R.; Williams, O. A.; Goltsman, G. N. openurl 
  Title Superconducting diamond films as perspective material for direct THz detectors Type Abstract
  Year 2017 Publication Proc. 28th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 28th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 82  
  Keywords KID, HEB, superconducting diamond films, boron-doped diamond films, Al, TiN, Si substrates, NEP  
  Abstract Superconducting films with a high resistivity in the normal state have established themselves as the best materials for direct THz radiation sensors, such as kinetic inductance detectors (KIDs) [1] and hot electron bolometers (nano-HEBs) [2]. The primary characteristics of the future instrument such as the sensitivity and the response time are determined by the material parameters such as the electron-phonon (e-ph) interaction time, the electron density and the resistivity of the material. For direct detectors, such as KIDs and nano-HEBs, to provide a high sensitivity and low noise one prefer materials with long e-ph relaxation times and low values of the electron density. As a potential material for THz radiation detection we have studied superconducting diamond films. A significant interest to diamond for the development of electronic devices is due to the evolution of its properties with the boron dopant concentration. At a high boron doping concentration, n B ~5·10 20 cm -3 , diamond has been reported to become a superconducting with T c depending on the doping level. Our previous study of energy relaxation in single-crystalline boron-doped diamond films epitaxially grown on a diamond shows a remarkably slow energy-relaxation at low temperatures. The electron-phonon cooling time varies from 400 ns to 700 ns over the temperature range 2.2 K to 1.7 K [3]. In superconducting materials such as Al and TiN, traditionally used in KIDs, the e-ph cooling times at 1.7 K correspond to ~20 ns [4] and ~100 ns [5], correspondingly. Such a noticeable slow e-ph relaxation in boron-doped diamond, in combination with a low value of carrier density (~10 21 cm -3 ) in comparison with typical metals (~10 23 cm -3 ) and a high normal state resistivity (~1500 μΩ·cm) confirms a potential of superconducting diamond for superconducting bolometers and resonator detectors. However, the price and the small substrate growth are of single crystal diamond limit practical applications of homoepitaxial diamond films. As an alternative way with more convenient technology, one can employ heteroepitaxial diamond films grown on large-size Si substrates. Here we report about measurements of e-ph cooling times in superconducting diamond grown on silicon substrate and discuss our expectations about the applicability of boron-doped diamond films to superconducting detectors. Our estimation of limit value of noise-equivalent power (NEP) and the energy resolution of bolometer made from superconducting diamond is order 10 -17 W/Hz 1/2 at 2 K and the energy resolution is of 0.1 eV that corresponds to counting single-photon up to 15 um. The estimation was obtained by using the film thickness of 70 nm and ρ ~ 1500 μΩ·cm, and the planar dimensions that are chosen to couple bolometer with 75 Ω log-spiral antenna. Although the value of NEP is far yet from what might like to have for certain astronomical applications, we believe that it can be improved by a suitable fabrication process. Also the direct detectors, based on superconducting diamond, will offer low noise performance at about 2 K, a temperature provided by inexpensive close-cycle refrigerators, which provides another practical advantage of development and application of these devices. [1] P.K. Day, et. al, Nature, 425, 817, 2003. [2] J. Wei, et al, Nature Nanotech., 3, 496, 2008. [3] A. Kardakova, et al, Phys. Rev. B, 93, 064506, 2016. [4] P. Santhanam and D. Prober, Phys. Rev. B, 29, 3733, 1984 [5] A. Kardakova, et al, Appl. Phys. Lett, vol. 103, p. 252602, 2013.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1173  
Permanent link to this record
 

 
Author Smirnov, K. V.; Vakhtomin, Yu. B.; Divochiy, A. V.; Ozhegov, R. V.; Pentin, I. V.; Gol'tsman, G. N. url  doi
openurl 
  Title Infrared and terahertz detectors on basis of superconducting nanostructures Type Conference Article
  Year 2010 Publication Microwave and Telecom. Technol. (CriMiCo), 20th Int. Crimean Conf. Abbreviated Journal  
  Volume Issue Pages 823-824  
  Keywords SSPD, SNSPD, HEB  
  Abstract Results of development of single-photon receiving systems of visible, infrared and terahertz range based on thin-film superconducting nanostructures are presented. The receiving systems are produced on the basis of superconducting nanostructures, which function by means of hot-electron phenomena.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor IEEE  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ sasha @ smirnov2010infrared Serial 1025  
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N. openurl 
  Title Temperature dependence of superconducting hot electron bolometers Type Conference Article
  Year 2013 Publication Not published results: 24th international symposium on space terahertz technology Abbreviated Journal  
  Volume Issue Pages  
  Keywords HEB  
  Abstract  
  Address Groningen,The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1067  
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'in, K.; Gol'tsman, G.; Gershenzon, E. doi  openurl
  Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers Type Conference Article
  Year 1997 Publication Proc. 27th Eur. Microwave Conf. Abbreviated Journal  
  Volume 2 Issue Pages 972-977  
  Keywords HEB mixer, fabrication process  
  Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 nm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 um wide and 2 um long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.2 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.  
  Address Jerusalem, Israel  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference 27th Eur. Microwave Conf.  
  Notes Approved no  
  Call Number Serial 1075  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: