|   | 
Details
   web
Records
Author Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N.
Title A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure Type Journal Article
Year 2005 Publication Semicond. Abbreviated Journal Semicond.
Volume 39 Issue 9 Pages 1082-1086
Keywords 2D electron gas, AlGaAs/GaAs heterostructures, mixers
Abstract Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1063-7826 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1463
Permanent link to this record
 

 
Author Nikogosyan, A. S.; Martirosyan, R. M.; Hakhoumian, A. A.; Makaryan, A. H.; Tadevosyan, V. R.; Goltsman, G. N.; Antipov, S. V.
Title Effect of absorption on the efficiency of terahertz radiation generation in the metal waveguide partially filled with nonlinear crystal LiNbO3, DAST or ZnTe Type Journal Article
Year 2019 Publication J. Contemp. Phys. Abbreviated Journal J. Contemp. Phys.
Volume 54 Issue 1 Pages 97-104
Keywords nonlinear crystal, THz, waveguide
Abstract The influence of terahertz (THz) radiation absorption on the efficiency of generation of coherent THz radiation in the system ‘nonlinear-optical crystal partially filling the cross section of a rectangular metal waveguide’ has been investigated. The efficiency of the nonlinear frequency conversion of optical laser radiation to the THz range depends on the loss in the system and the fulfillment of the phase-matching (FM) condition in a nonlinear crystal. The method of partially filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. The phase matching is achieved by numerical determination of the thickness of the nonlinear crystal, that is the degree of partial filling of the waveguide. The attenuation of THz radiation caused by losses both in the metal walls of the waveguide and in the crystal was studied, taking into account the dimension of the cross section of the waveguide, the degree of partial filling, and the dielectric constant of the crystal. It is shown that the partial filling of the waveguide with a nonlinear crystal results in an increase in the efficiency of generation of THz radiation by an order of magnitude, owing to the decrease in absorption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1068-3372 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1289
Permanent link to this record
 

 
Author Antipov, S. V.; Svechnikov, S. I.; Smirnov, K. V.; Vakhtomin, Y. B.; Finkel, M. I.; Goltsman, G. N.; Gershenzon, E. M.
Title Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz Type Journal Article
Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations
Volume 9 Issue 4 Pages 242-245
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1069-1227 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1550
Permanent link to this record
 

 
Author Svechnikov, S. I.; Antipov, S. V.; Vakhtomin, Y. B.; Goltsman, G. N.; Gershenzon, E. M.; Cherednichenko, S. I.; Kroug, M.; Kollberg, E.
Title Conversion and noise bandwidths of terahertz NbN hot-electron bolometer mixers Type Journal Article
Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations
Volume 9 Issue 3 Pages 205-210
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1069-1227 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1551
Permanent link to this record
 

 
Author Elezov, M. S.; Semenov, A. V.; An, P. P.; Tarkhov, M. A.; Goltsman, G. N.; Kardakova, A. I.; Kazakov, A. Y.
Title Investigating the detection regimes of a superconducting single-photon detector Type Journal Article
Year 2013 Publication J. Opt. Technol. Abbreviated Journal J. Opt. Technol.
Volume 80 Issue 7 Pages 435
Keywords SSPD, quantum efficiency
Abstract The detection regimes of a superconducting single-photon detector have been investigated. A technique is proposed for determining the regions in which “pure regimes” predominate. Based on experimental data, the dependences of the internal quantum efficiency on the bias current are determined in the one-, two-, and three-photon detection regimes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1070-9762 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1172
Permanent link to this record
 

 
Author Iomdina, E. N.; Seliverstov, S. V.; Teplyakova, K. O.; Jani, E. V.; Pozdniakova, V. V.; Polyakova, O. N.; Goltsman, G. N.
Title Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: in vivo assessment of hydration and its verification Type Journal Article
Year 2021 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 26 Issue 4 Pages
Keywords medicine; scheimpflug imaging; UVB; confocal microscopy; cornea; optical coherent tomography; rabbit eyes; terahertz radiation
Abstract SIGNIFICANCE: Water content plays a vital role in the normally functioning visual system; even a minor disruption in the water balance may be harmful. Today, no direct method exists for corneal hydration assessment, while it could be instrumental in early diagnosis and control of a variety of eye diseases. The use of terahertz (THz) radiation, which is highly sensitive to water content, appears to be very promising. AIM: To find out how THz scanning parameters of corneal tissue measured by an experimental setup, specially developed for in vivo contactless estimations of corneal reflectivity coefficient (RC), are related to pathological changes in the cornea caused by B-band ultraviolet (UVB) exposure. APPROACH: The setup was tested on rabbit eyes in vivo. Prior to the course of UVB irradiation and 1, 5, and 30 days after it, a series of examinations of the corneal state was made. At the same time points, corneal hydration was assessed by measuring RC. RESULTS: The obtained data confirmed the negative impact of UVB irradiation course on the intensity of tear production and on the corneal thickness and optical parameters. A significant (1.8 times) increase in RC on the 5th day after the irradiation course, followed by a slight decrease on the 30th day after it was revealed. The RC increase measured 5 days after the UVB irradiation course generally corresponded to the increase (by a factor of 1.3) of tear production. RC increase occurred with the corneal edema, which was manifested by corneal thickening (by 18.2% in the middle area and 17.6% in corneal periphery) and an increased volume of corneal tissue (by 17.6%). CONCLUSIONS: Our results demonstrate that the proposed approach can be used for in vivo contactless estimation of the reflectivity of rabbit cornea in the THz range and, thereby, of cornea hydration.
Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathema, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:33834684; PMCID:PMC8027227 Approved no
Call Number Serial 1258
Permanent link to this record
 

 
Author Iomdina, E. N.; Goltsman, G. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.
Title Study of transmittance and reflectance spectra of the cornea and the sclera in the THz frequency range Type Journal Article
Year 2016 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 21 Issue 9 Pages 97002 (1 to 5)
Keywords BWO, IMPATT diode, Schottky diode, medicine, animals, cornea, physiology, humans, rabbits, sclera diagnostic imaging, physiology
Abstract An adequate water balance (hydration extent) is one of the basic factors of normal eye function, including its external shells: the cornea and the sclera. Adequate control of corneal and scleral hydration is very important for early diagnosis of a variety of eye diseases, stating indications for and contraindications against keratorefractive surgeries and the choice of contact lens correction solutions. THz systems of creating images in reflected beams are likely to become ideal instruments of noninvasive control of corneal and scleral hydration degrees. This paper reports on the results of a study involving transmittance and reflectance spectra for the cornea and the sclera of rabbit and human eyes, as well as those of the rabbit eye, in the frequency range of 0.13 to 0.32 THz. The dependence of the reflectance coefficient of these tissues on water mass percentage content was determined. The experiments were performed on three corneas, three rabbit scleras, two rabbit eyes, and three human scleras. The preliminary results demonstrate that the proposed technique, based on the use of a continuous THz radiation, may be utilized to create a device for noninvasive control of corneal and scleral hydration, which has clear potential of broad practical application.
Address Moscow State Pedagogical University, Department of Physics, 29 Malaya Pirogovskaya Street, Moscow 119435, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:27626901 Approved no
Call Number Serial 1335
Permanent link to this record
 

 
Author Kovalyuk, V.; Hartmann, W.; Kahl, O.; Kaurova, N.; Korneev, A.; Goltsman, G.; Pernice, W. H. P.
Title Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits Type Journal Article
Year 2013 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 21 Issue 19 Pages 22683-22692
Keywords SSPD, SNSPD, NbN nanoeires, Si3N4 waveguides
Abstract We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:24104155 Approved no
Call Number Serial 1213
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kazakov, A.; Voronov, B.M.; Goltsman, G.N.
Title Potential of a superconducting photon counter for heterodyne detection at the telecommunication wavelength Type Journal Article
Year 2016 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 24 Issue 26 Pages 30474-30484
Keywords NbN SSPD mixer, SNSPD
Abstract Here, we report on the successful operation of a NbN thin film superconducting nanowire single-photon detector (SNSPD) in a coherent mode (as a mixer) at the telecommunication wavelength of 1550 nm. Providing the local oscillator power of the order of a few picowatts, we were practically able to reach the quantum noise limited sensitivity. The intermediate frequency gain bandwidth (also referred to as response or conversion bandwidth) was limited by the spectral band of a single-photon response pulse of the detector, which is proportional to the detector size. We observed a gain bandwidth of 65 MHz and 140 MHz for 7 x 7 microm2 and 3 x 3 microm2 devices, respectively. A tiny amount of the required local oscillator power and wide gain and noise bandwidths, along with unnecessary low noise amplification, make this technology prominent for various applications, with the possibility for future development of a photon counting heterodyne-born large-scale array.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:28059394 Approved no
Call Number Serial 1207
Permanent link to this record
 

 
Author Elezov, M.; Ozhegov, R.; Goltsman, G.; Makarov, V.
Title Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution Type Journal Article
Year 2019 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 27 Issue 21 Pages 30979-30988
Keywords SSPD, SNSPD
Abstract We present an active anti-latching system for superconducting nanowire single-photon detectors. We experimentally test it against a bright-light attack, previously used to compromise security of quantum key distribution. Although our system detects continuous blinding, the detector is shown to be partially blindable and controllable by specially tailored sequences of bright pulses. Improvements to the countermeasure are suggested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:31684339 Approved no
Call Number Serial 1275
Permanent link to this record
 

 
Author Nasr, M. B.; Minaeva, O.; Goltsman, G. N.; Sergienko, A. V.; Saleh, B. E.; Teich, M. C.
Title Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors Type Journal Article
Year 2008 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 16 Issue 19 Pages 15104-15108
Keywords SSPD, SNSPD
Abstract We generate ultrabroadband biphotons via the process of spontaneous parametric down-conversion in a quasi-phase-matched nonlinear grating that has a linearly chirped poling period. Using these biphotons in conjunction with superconducting single-photon detectors (SSPDs), we measure the narrowest Hong-Ou-Mandel dip to date in a two-photon interferometer, having a full width at half maximum (FWHM) of approximately 5.7 fsec. This FWHM corresponds to a quantum optical coherence tomography (QOCT) axial resolution of 0.85 µm. Our results indicate that a high flux of nonoverlapping biphotons may be generated, as required in many applications of nonclassical light.
Address Departments of Electrical & Computer Engineering and Physics, Quantum Imaging Laboratory, Boston University, Boston, MA 02215, USA. boshra@bu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:18795048 Approved no
Call Number Serial 1408
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Korneeva, Y. P.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N.
Title Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field Type Journal Article
Year 2015 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 92 Issue 10 Pages 104503 (1 to 9)
Keywords SSPD, SNSPD
Abstract We use an external magnetic field to probe the detection mechanism of a superconducting nanowire single-photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter Δ across the whole width of the superconducting nanowire after absorption of the photon) does not explain observed weak-field dependence of the photon count rate (PCR) for photons with λ=450nm and noticeable decrease of PCR (with increasing the magnetic field) in a range of the currents for photons with wavelengths λ=450–1200nm. Found experimental results for all studied wavelengths can be explained by the vortex hot spot model (which assumes partial suppression of Δ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed Δ.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1343
Permanent link to this record
 

 
Author Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P.
Title Cavity-enhanced and ultrafast superconducting single-photon detectors Type Journal Article
Year 2016 Publication Nano Lett. Abbreviated Journal Nano Lett.
Volume 16 Issue 11 Pages 7085-7092
Keywords SSPD; SNSPD; multiphoton detection; nanophotonic circuit; photonic crystal cavity
Abstract Ultrafast single-photon detectors with high efficiency are of utmost importance for many applications in the context of integrated quantum photonic circuits. Detectors based on superconductor nanowires attached to optical waveguides are particularly appealing for this purpose. However, their speed is limited because the required high absorption efficiency necessitates long nanowires deposited on top of the waveguide. This enhances the kinetic inductance and makes the detectors slow. Here, we solve this problem by aligning the nanowire, contrary to usual choice, perpendicular to the waveguide to realize devices with a length below 1 mum. By integrating the nanowire into a photonic crystal cavity, we recover high absorption efficiency, thus enhancing the detection efficiency by more than an order of magnitude. Our cavity enhanced superconducting nanowire detectors are fully embedded in silicon nanophotonic circuits and efficiently detect single photons at telecom wavelengths. The detectors possess subnanosecond decay ( approximately 120 ps) and recovery times ( approximately 510 ps) and thus show potential for GHz count rates at low timing jitter ( approximately 32 ps). The small absorption volume allows efficient threshold multiphoton detection.
Address Institute of Physics, University of Munster , 48149 Munster, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1530-6984 ISBN Medium
Area Expedition Conference
Notes PMID:27759401 Approved no
Call Number Serial 1208
Permanent link to this record
 

 
Author Meledin, D.; Tong, C.-Y. E.; Blundell, R.; Goltsman, G.
Title Measurement of intermediate frequency bandwidth of hot electron bolometer mixers at terahertz frequency range Type Journal Article
Year 2003 Publication IEEE Microw. Wireless Compon. Lett. Abbreviated Journal IEEE Microw. Wireless Compon. Lett.
Volume 13 Issue 11 Pages 493-495
Keywords waveguide NbN HEB mixers
Abstract We have developed a new experimental setup for measuring the IF bandwidth of superconducting hot electron bolometer mixers. In our measurement system we use a chopped hot filament as a broadband signal source, and can perform a high-speed IF scan with no loss of accuracy when compared to coherent methods. Using this technique we have measured the 3 dB IF bandwidth of hot electron bolometer mixers, designed for THz frequency operation, and made from 3-4 nm thick NbN film deposited on an MgO buffer layer over crystalline quartz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1531-1309 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1509
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Photon absorption near the gap frequency in a hot electron bolometer Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-4
Keywords NBN HEB mixer
Abstract The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1331
Permanent link to this record