|   | 
Details
   web
Records
Author Danerud, M.; Winkler, D.; Lindgren, M.; Zorin, M.; Trifonov, V.; Karasik, B.; Gershenzon, E. M.; Gol'tsman, G. N.
Title A fast infrared detector based on patterned YBCO thin film Type Journal Article
Year 1994 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 7 Issue 5 Pages 321-323
Keywords YBCO HTS detector
Abstract Detectors for infrared radiation ( lambda =0.85 mu m) were made of 50 nm thick YBa2Cu3O7- delta films on LaAlO3 and MgO or 60 nm thick films on NdGaO3. Parallel strips (1 mu m wide by 20 mu m long) were patterned in the films and formed the active device. These devices were designed to detect short infrared laser pulses by electron heating. The detectors were current biased into the resistive and the normal states. The response was studied in direct pulse measurements as well as by amplitude modulation of a laser. The pulse measurements showed a fast picosecond response followed by a slower decay related to phonon escape through the film-substrate interface and heat diffusion in the substrate. The frequency spectra up to 10 GHz showed two slopes with a knee corresponding to the phonon escape time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1646
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G.
Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue 2-3 Pages 334-344
Keywords PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN
Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 701
Permanent link to this record
 

 
Author Lieberzeit, P.; Afzal, A.; Rehman, A.; Dickert, F.
Title Nanoparticles for detecting pollutants and degradation processes with mass-sensitive sensors Type Journal Article
Year 2007 Publication Sensors and Actuators B: Chemical Abbreviated Journal Sensors and Actuators B: Chemical
Volume 127 Issue 1 Pages 132-136
Keywords molecular imprinted polymer, MIP, recognition, quartz crystal microbalance, QCM, mass-sensitive sensor, detector
Abstract Compared with thin films, nanoparticle layers as coatings for QCM offer substantially increased interaction areas and sensitivities with favourable response times. Molybdenum disulphide (MoS2), e.g. has turned out to be a highly suitable material for interacting with thiols. The resulting materials are sufficiently soft according to Pearson to bind sulphur containing compounds reversibly. Depositing MoS2 nanoparticle submonolayers (particle size 200–300 nm) leads to an increase in sensor response by a factor of ten compared to a pure gold layer. Additionally, the nanoparticle layers show fully reversible sensor signals. Particle synthesis can also be combined with the molecular imprinting approach: by a precipitation technique, it is possible to generate molecularly imprinted TiO2 particles for engine oil degradation measurements. Compared with deposited thin layers, particles incorporate oxidised compounds from lubricants by a factor of two better.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0925-4005 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 568
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Semenov, A. D.; Sergeev, A. V.
Title Processes of electron-phonon interaction in thin YBaCuO films Type Journal Article
Year 1991 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 185-189 Issue Pages 1371-1372
Keywords YBCO HTS detectors
Abstract The ultrafast voltage response of YBaCuO films to laser radiation is studied and compared with previously investigated quasiparicles response to radiation of submillimeter wavelength range. Voltage shift under the visible light radiation has two components. Picosecond response realized as suppression superconductivity by nonequilibrium excess quasiparticles, response time is determined by quasiparticles recombination rate. Nanosecond response is probably due to bolometric effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1676
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Goghidze, I. G.; Kouminov, P. B.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M.
Title Influence of grain boundary weak links on the nonequilibrium response of YBaCuO thin films to short laser pulses Type Journal Article
Year 1994 Publication J. Supercond. Abbreviated Journal J. Supercond.
Volume 7 Issue 4 Pages 751-755
Keywords YBCO HTS detector, nonequilibrium response
Abstract The transient voltage response in both epitaxial and granular YBaCuO thin films to 80 ps pulses of YAG∶Nd laser radiation of wavelength 0.63 and 1.54 μm was studied. In the normal and resistive states both types of films demonstrate two components: a nonequilibrium picosecond component and a bolometric nanosecond one. The normalized amplitudes are almost the same for all films. In the superconducting state we observed a kinetic inductive response and two-component shape after integration. The normalized amplitude of the response in granular films is up to five orders of magnitude larger than in epitaxial films. We interpret the nonequilibrium response in terms of a suppression of the order parameter by the excess of quasiparticles followed by the change of resistance in the normal and resistive states or kinetic inductance in the superconducting state. The sharp rise of inductive response in granular films is explained both by a diminishing of the cross section for current percolation through the disordered network of Josephson weak links and by a decrease of condensate density in neighboring regions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0896-1107 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1636
Permanent link to this record