|   | 
Details
   web
Records
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K.
Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
Year 2019 Publication J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B
Volume 36 Issue 3 Pages B20
Keywords NbN PNR SSPD, SNSPD
Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0740-3224 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1225
Permanent link to this record
 

 
Author Divochiy, A.; Misiaszek, M.; Vakhtomin, Y.; Morozov, P.; Smirnov, K.; Zolotov, P.; Kolenderski, P.
Title Single photon detection system for visible and infrared spectrum range Type Journal Article
Year 2018 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 43 Issue 24 Pages 6085-6088
Keywords
Abstract We demonstrate niobium nitride based superconducting single-photon detectors sensitive in the spectral range 452-2300 nm. The system performance was tested in a real-life experiment with correlated photons generated by means of spontaneous parametric downconversion, where one photon was in the visible range and the other was in the infrared range. We measured a signal to noise ratio as high as 4x10(4) in our detection setting. A photon detection efficiency as high as 64% at 1550 nm and 15% at 2300 nm was observed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0146-9592 ISBN Medium
Area Expedition Conference
Notes https://arxiv.org/abs/1807.04273 Approved no
Call Number Serial 1227
Permanent link to this record
 

 
Author Kitaeva, G. K.; Kornienko, V. V.; Kuznetsov, K. A.; Pentin, I. V.; Smirnov, K. V.; Vakhtomin, Y. B.
Title Direct detection of the idler THz radiation generated by spontaneous parametric down-conversion Type Journal Article
Year 2019 Publication Opt. Lett. Abbreviated Journal Opt. Lett.
Volume 44 Issue 5 Pages 1198-1201
Keywords HEB applications
Abstract We study parametric down-conversion (PDC) of optical laser radiation in the strongly frequency non-degenerate regime which is promising for the generation of quantum-correlated pairs of extremely different spectral ranges, the optical and the terahertz (THz) ones. The possibility to detect tenuous THz-frequency photon fluxes generated under low-gain spontaneous PDC is demonstrated using a hot electron bolometer. Then experimental dependences of the THz radiation power on the detection angle and on the pump intensity are analyzed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0146-9592 ISBN Medium
Area Expedition Conference
Notes PMID:30821747 Approved no
Call Number Serial 1801
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.; Becker, W.
Title Erratum: “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector” [Rev. Sci. Instrum. 87, 053117 (2016)] Type Miscellaneous
Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.
Volume 87 Issue 6 Pages 069901
Keywords SSPD, SNSPD, TCSPC, jitter
Abstract In the original paper1the Ref. 10 should be M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, Proc. SPIE9370, 93701T (2015).
Address Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0034-6748 ISBN Medium
Area Expedition Conference
Notes PMID:27370512 Approved no
Call Number Serial 1810
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N.
Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 128 Issue 22 Pages 224303 (1 to 11)
Keywords HEB, resonant tunneling diode, RTD
Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1262
Permanent link to this record