toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ryabchun, S.; Tong, C.-Y. E.; Blundell, R.; Kimberk, R.; Gol'tsman, G. url  doi
openurl 
  Title Study of the effect of microwave radiation on the operation of HEB mixers in the terahertz frequency range Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 391-394  
  Keywords NbN HEB mixers  
  Abstract We have investigated the effect of injecting microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the hot-electron bolometer mixer incorporated into a THz heterodyne receiver. More specifically, we show that exposing the mixer to microwave radiation does not cause a significant rise of the receiver noise temperature and fall of the mixer conversion gain so long as the microwave power is a small fraction of local oscillator power. The injection of a small, but controlled amount of microwave power therefore enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the gain stability of hot electron bolometer mixer receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1427  
Permanent link to this record
 

 
Author Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B. url  doi
openurl 
  Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 395-398  
  Keywords NbN HEB mixers, noise temperature  
  Abstract In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1429  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title New results for NbN phonon-cooled hot electron bolometric mixers above 1 THz Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 4217-4220  
  Keywords NbN HEB mixers  
  Abstract NbN Hot Electron Bolometric (HEB) mixers have produced promising results in terms of DSB receiver noise temperature (2800 K at 1.56 THz). The LO source for these mixers is a gas laser pumped by a CO/sub 2/ laser and the device is quasi-optically coupled through an extended hemispherical lens and a self-complementary log-periodic toothed antenna. NbN HEBs do not require submicron dimensions, can be operated comfortably at 4.2 K or higher, and require LO power of about 100-500 nW. IF noise bandwidths of 5 GHz or greater have been demonstrated. The DC bias point is also not affected by thermal radiation at 300 K. Receiver noise temperatures below 1 THz are typically 450-600 K and are expected to gradually approach these levels above 1 THz as well. NbN HEB mixers thus are rapidly approaching the type of performance required of a rugged practical receiver for astronomy and remote sensing in the THz region.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1568  
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E. url  doi
openurl 
  Title Heterodyne measurements of a NbN superconducting hot electron mixer at terahertz frequencies Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 3757-3760  
  Keywords NbN HEB mixers  
  Abstract The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The best results of the DSB noise temperature at 1.5 GHz IF frequency obtained with one device are: 1300 K at 650 GHz, 4700 K at 2.5 THz and 10000 K at 3.12 THz. The measurements were performed at 4.5 K ambient temperature. The amount of local oscillator (LO) power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain measured at 650 GHz is -9 dB, the total conversion gain is -14 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1569  
Permanent link to this record
 

 
Author Semenov, A. D.; Gousev, Y. P.; Renk, K. F.; Voronov, B. M.; Gol'tsman, G. N.; Gershenzon, E. M.; Schwaab, G.W.; Feinaugle, R. url  doi
openurl 
  Title Noise characteristics of a NbN hot-electron mixer at 2.5 THz Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3572-3575  
  Keywords NbN HEB mixers  
  Abstract The noise temperature of a NbN phonon cooled hot-electron mixer has been measured at a frequency of 2.5 THz for various operating conditions. We obtained for optimal operation a double sideband mixer noise temperature of /spl ap/14000 K and a system conversion loss of /spl ap/23 dB at intermediate frequencies up to 1 GHz. The dependences of the mixer noise temperature on the bias voltage, local oscillator power, and intermediate frequency were consistent with the phenomenological description based on the effective temperature approximation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1594  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Okunev, O. V.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.; Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S. url  doi
openurl 
  Title 2.5 THz NbN hot electron mixer with integrated tapered slot antenna Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3548-3551  
  Keywords NbN HEB mixers  
  Abstract A Hot Electron Bolometer (HEB) mixer for 2.5 THz utilizing a NbN thin film device, integrated with a Broken Linearly Tapered Slot Antenna (BLTSA), has been fabricated and is presently being tested. The NbN HEB device and the antenna were fabricated on a SiO2membrane. A 0.5 micrometer thick SiO2layer was grown by rf magnetron reactive sputtering on a GaAs wafer. The HEB device (phonon-cooled type) was produced as several parallel strips, 1 micrometer wide, from an ultrathin NbN film 4-7 nm thick, that was deposited onto the SiO2layer by dc magnetron reactive sputtering. The BLTSA was photoetched in a multilayer Ti-Au metallization. In order to strengthen the membrane, the front-side of the wafer was coated with a 5 micrometer thick polyimide layer just before the membrane formation. The last operation was anisotropic etching of the GaAs in a mixture of HNO3and H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1595  
Permanent link to this record
 

 
Author Svechnikov, S.; Gol'tsman, G.; Voronov, B.; Yagoubov, P.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekstrom, H.; Kollberg, E.; Semenov, A.; Gousev, Y.; Renk, K. url  doi
openurl 
  Title Spiral antenna NbN hot-electron bolometer mixer at submm frequencies Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3395-3398  
  Keywords NbN HEB mixers  
  Abstract We have studied the phonon-cooled hot-electron bolometer (HEB) as a quasioptical mixer based on a spiral antenna designed for the 0.3-1 THz frequency band and fabricated on sapphire and high resistivity silicon substrates. HEB devices were produced from superconducting 3.5-5 nm thick NbN films with a critical temperature 10-12 K and a critical current density of approximately 10/sup 7/ A/cm/sup 2/ at 4.2 K. For these devices we reached a DSB receiver noise temperature below 1500 K, a total conversion loss of L/sub t/=16 dB in the 500-700 GHz frequency range, an IF bandwidth of 3-4 GHz and an optimal LO absorbed power of /spl sime/4 /spl mu/W. We experimentally analyzed various contributions to the conversion loss and obtained an RF coupling factor of about 5 dB, internal mixer loss of 10 dB and IF mismatch of 1 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1597  
Permanent link to this record
 

 
Author Karasik, B. S.; Gol'tsman, G. N.; Voronov, B. M.; Svechnikov, S. I.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.; Yngvesson, K. S. url  doi
openurl 
  Title Hot electron quasioptical NbN superconducting mixer Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages 2232-2235  
  Keywords NbN HEB mixers  
  Abstract Hot electron superconductor mixer devices made of thin NbN films on SiO/sub 2/-Si/sub 3/N/sub 4/-Si membrane have been fabricated for 300-350 GHz operation. The device consists of 5-10 parallel strips each 5 /spl mu/m long by 1 /spl mu/m wide which are coupled to a tapered slot-line antenna. The I-V characteristics and position of optimum bias point were studied in the temperature range 4.5-8 K. The performance of the mixer at higher temperatures is closer to that predicted by theory for uniform electron heating. The intermediate frequency bandwidth versus bias has also been investigated. At the operating temperature 4.2 K a bandwidth as wide as 0.8 GHz has been measured for a mixer made of 6 nm thick film. The bandwidth tends to increase with operating temperature. The performance of the NbN mixer is expected to be better for higher frequencies where the absorption of radiation should be more uniform.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1622  
Permanent link to this record
 

 
Author Tong, C. E.; Blundell, R.; Papa, D. C.; Smith, M.; Kawamura, J.; Gol'tsman, G.; Gershenzon, E.; Voronov, B. url  doi
openurl 
  Title An all solid-state superconducting heterodyne receiver at terahertz frequencies Type Journal Article
  Year 1999 Publication IEEE Microw. Guid. Wave Lett. Abbreviated Journal IEEE Microw. Guid. Wave Lett.  
  Volume 9 Issue 9 Pages 366-368  
  Keywords waveguide NbN HEB mixers  
  Abstract A superconducting hot-electron bolometer mixer-receiver operating from 1 to 1.26 THz has been developed. This heterodyne receiver employs two solid-state local oscillators each consisting of a Gunn oscillator followed by two stages of varactor frequency multiplication. The measured receiver noise temperature is 1350 K at 1.035 THz and 2700 K at 1.26 THz. This receiver demonstrates that tunable solid-state local oscillators, supplying only a few micro-watts of output power, can be used in terahertz receiver applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 1051-8207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1565  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Phonon-cooled hot-electron bolometric mixer: overview of recent results Type Journal Article
  Year 1999 Publication Appl. Supercond. Abbreviated Journal Appl. Supercond.  
  Volume 6 Issue 10-12 Pages 649-655  
  Keywords NbN HEB mixers  
  Abstract The paper presents an overview of recent results for NbN phonon-cooled hot electron bolometric (HEB) mixers. The noise temperature of the receivers based on both quasioptical and waveguide versions of HEB mixer has crossed the level of 1 K·GHz−1 at 430 GHz (410 K) and 600–650 GHz (480 K) and is close to this level at 820 GHz (1100 K) and 900 GHz (980 K). The gain bandwidth measured for quasioptical HEB mixer at 620 GHz reached 4 GHz and the noise temperature bandwidth was almost 8 GHz. Local oscillator power requirements are about 1 μW for mixers made by photolithography and are about 100 nW for mixers made by e-beam lithography. The studies in terahertz receivers based on HEB superconducting mixers now present a dynamic, rapidly developing field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0964-1807 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1564  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: