|   | 
Details
   web
Records
Author Beebe, M. R.; Beringer, D. B.; Burton, M. C.; Yang, K.; Lukaszew, R. A.
Title Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films Type Journal Article
Year 2016 Publication Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films Abbreviated Journal Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Volume 34 Issue 2 Pages 021510 (1 to 4)
Keywords potential plagiarism, possible plagiarism, NbN films
Abstract The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB2 thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature TC, the authors are the first to report on the correlation between stoichiometry and the lower critical field HC1.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0734-2101 ISBN Medium
Area Expedition Conference
Notes Potential plagiarism for 1503 Approved no
Call Number Serial 1504
Permanent link to this record
 

 
Author Thiébeau, C.; Courtois, D.; Delahaigue, A.; Corre, H.; Mouanda, J. C.; Fayt, A.
Title Dual-beam laser heterodyne spectrometer: Ethylene absorption spectrum in the 10 μm range Type Journal Article
Year 1988 Publication Applied Physics B: Photophysics and Laser Chemistry Abbreviated Journal Appl. Phys. B
Volume 47 Issue 4 Pages 313-318
Keywords infrared applications
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0721-7269 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 493
Permanent link to this record
 

 
Author Lang, P. T.; Leipold, I.; Knott, W. J.; Semenov, A. D.; Gol'tsman, G. N.; Renk, K. F.
Title New far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser Type Journal Article
Year 1991 Publication Appl. Phys. B Abbreviated Journal Appl. Phys. B
Volume 53 Issue 4 Pages 207-212
Keywords CO2 IR lasers, applications, CH3Cl, CH3Br
Abstract In this paper we report on the detection of new far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser. We found 80 new lines for CH3Cl and 9 new lines for CH3Br in the frequency region between 16 cm−1 and 41 cm−1, all due to stimulated Raman scattering. For the Raman gain regions bandwidths up to about 700 MHz were found. We also observed high intensity short far-infrared laser pulses of durations in the nanosecond regime.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0721-7269 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1678
Permanent link to this record
 

 
Author Kampfrath, Tobias; Perfetti, Luca; von Volkmann, Konrad; Aguirre, Carla M.; Desjardins, Patrick; Martel, Richard; Frischkorn, Christian; Wolf, Martin
Title Optical response of single-wall carbon nanotube sheets in the far-infrared spectral range from 1 THz to 40 THz Type Journal Article
Year 2007 Publication Physica Status Solidi (B) Abbreviated Journal Phys. Stat. Sol. (B)
Volume 244 Issue 11 Pages 3950-3954
Keywords single wall, carbon nanotube, SWNT, SWCNT, CNT, detector, sensor, TDS
Abstract The optical properties of single-wall carbon nanotube sheets in the far-infrared have been investigated with THz time-domain spectroscopy. Over a wide frequency range from 1 THz to 40 THz, the complex dielectric function of the nanotube sample has been derived. Our data can be excellently reproduced by a Drude-Lorentz model function. The extracted fit parameters such as Lorentz resonance frequency and plasma frequency are consistent with values obtained by scanning tunneling techniques. We discuss the origin of both the Lorentz and Drude contribution in terms of direct and indirect optical transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0370-1972 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 569
Permanent link to this record
 

 
Author Fedorov, G.; Gayduchenko, I.; Titova, N.; Gazaliev, A.; Moskotin, M.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Carbon nanotube based schottky diodes as uncooled terahertz radiation detectors Type Journal Article
Year 2018 Publication Phys. Status Solidi B Abbreviated Journal Phys. Status Solidi B
Volume 255 Issue 1 Pages 1700227 (1 to 6)
Keywords carbon nanotube schottky diodes, CNT
Abstract Despite the intensive development of the terahertz technologies in the last decade, there is still a shortage of efficient room‐temperature radiation detectors. Carbon nanotubes (CNTs) are considered as a very promising material possessing many of the features peculiar for graphene (suppression of backscattering, high mobility, etc.) combined with a bandgap in the carrier spectrum. In this paper, we investigate the possibility to incorporate individual CNTs into devices that are similar to Schottky diodes. The latter is currently used to detect radiation with a frequency up to 50 GHz. We report results obtained with semiconducting (bandgap of about 0.5 eV) and quasi‐metallic (bandgap of few meV) single‐walled carbon nanotubes (SWNTs). Semiconducting CNTs show better performance up to 300 GHz with responsivity up to 100 V W−1, while quasi‐metallic CNTs are shown to operate up to 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 0370-1972 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1321
Permanent link to this record