|   | 
Details
   web
Records
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Yang, Z. Q.; Baryshev, A. M.; Barends, R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.; Callaos, N.
Title Twin-slot antenna coupled NbN hot electron bolometer mixers for space applications Type Conference Article
Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI
Volume 9 Issue Pages 148-153
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher International Institute of Informatics and Systemics Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 9806560639, 9789806560635 Medium
Area Expedition Conference 9th World Multi-Conference on Systemics, Cybernetics and Informatics
Notes Approved no
Call Number Serial 1480
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G.
Title Hot electron bolometer mixers with improved interfaces: sensitivity, LO power and stability Type Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 17-24
Keywords NbN HEB mixers
Abstract We study twin slot antenna coupled NbN hot electron bolometer mixers with an improved contact structure and a small volume, ranging from 1 µm × 0.1 µm to 2 × 0.3 µm. We obtain a DSB receiver noise temperature of 900 K at 1.6 THz and 940 K at 1.9 THz. To explore the practical usability of such small HEB mixers we evaluate the LO power requirement, the sensitivity and the stability. We find that the LO power requirement of the smallest mixers is reduced to about 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5. The stability of these receivers is characterized using a measurement of the Allan Variance. We find an Allan time of 0.5 sec. in an 80 MHz bandwidth. A small increase in stability can be reached by using a higher bias at the expense of a significant amount of sensitivity. The stability is sufficient for spectroscopic applications in a 1 MHz bandwidth at a 1 Hz chopping frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1491
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte 2, P. A. J.; Voronov, B.; Gol’tsman, G.
Title Increased bandwidth of NbN phonon cooled hot electron bolometer mixers Type Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 381-386
Keywords NbN HEB mixers, IF bandwidth
Abstract We study experimentally the IF gain bandwidth of NbN phonon-cooled hot-electron-bolometer (HEB) mixers for a set of devices with different contact structures but an identical NbN film. We observe that the IF bandwidth depends strongly on the exact contact structure and find an IF gain bandwidth of 6 GHz for a device with an additional superconducting layer (NbTiN) in between the active NbN film and the gold contact to the antenna. These results contradict the common opinion that the IF bandwidth is determined by the phonon-escape time between the NbN film and the substrate. Hence we calculate the IF gain bandwidth of a superconducting film using a two-temperature model. We find that the bandwidth increases strongly with operating temperature and is not limited by the phonon escape time. This is because of strong temperature dependence of the phonon specific heat in the NbN film.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1494
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title NbN hot electron bolometer mixers with superior performance for space applications Type Conference Article
Year 2004 Publication Proc. Int. workshop on low temp. electronics Abbreviated Journal Proc. Int. workshop on low temp. electronics
Volume Issue Pages 11-17
Keywords NbN HEB mixers, applications
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Noordwijk Editor Armandillo, E.; Leone, B.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference International workshop on low temperature electronics- WOLTE 6 - Noordwijk
Notes Approved no
Call Number Serial 1496
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Noise performance of NbN hot electron bolometer mixers at 2.5 THz and its dependence on the contact resistance Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 11-19
Keywords NbN HEB mixers
Abstract NbN hot electron bolometer mixers (HEBM) are at this moment the best heterodyne receivers for frequencies above 1 Thz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. The result is a low transparency interface between the bolometer itself and the contact/antenna structure. In this paper we report a detailed experimental study on a novel idea to increase the transparency of this interface. This leads to a record sensitivity and more reproducible performance. We compare identical bolometers, coupled with a spiral antenna, with different NbN bolometer-contact pad interfaces. We find that cleaning the NbN interface alone results in an increase in the noise temperature. However, cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature of the HEBm with more than a factor of 2. A device with a contact pad on top of an in-situ cleaned NbN film consisting of 10 nm of NbTiN and 40 nm of gold has a DSB noise temperature of 1050 K at 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1497
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J.; de Korte, P.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title Doubling of sensitivity and bandwidth in phonon-cooled hot-electron bolometer mixers Type Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5498 Issue Pages 168-176
Keywords Hot electron bolometers, bandwidth, noise temperature, experimental
Abstract NbN hot electron bolometer (HEB) mixers are at this moment the best heterodyne detectors for frequencies above 1 THz. However, the fabrication procedure of these devices is such that the quality of the interface between the NbN superconducting film and the contact structure is not under good control. This results in a contact resistance between the NbN bolometer and the contact pad. We compare identical bolometers, with different NbN – contact pad interfaces, coupled with a spiral antenna. We find that cleaning the NbN interface and adding a thin additional superconductor prior to the gold contact deposition improves the noise temperature and the bandwidth of the HEB mixers with more than a factor of 2. We obtain a DSB noise temperature of 950 K at 2.5 THz and a Gain bandwidth of 5-6 GHz. For use in real receiver systems we design small volume (0.15x1 micron) HEB mixers with a twin slot antenna. We find that these mixers combine good sensitivity (900 K at 1.6 THz) with low LO power requirement, which is 160 – 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II
Notes Approved no
Call Number Serial 1744
Permanent link to this record
 

 
Author Ganzevles, W. F. M.; Gao, J. R.; de Korte, P. A. J.; Klapwijk, T. M.
Title Direct response of microstrip line coupled Nb THz hot-electron bolometer mixers Type Journal Article
Year 2001 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 79 Issue 15 Pages 2483-2485
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 311
Permanent link to this record
 

 
Author Dorenbos, S. N.; Reiger, E. M.; Perinetti, U.; Zwiller, V.; Zijlstra, T.; Klapwijk, T. M.
Title Low noise superconducting single photon detectors on silicon Type Journal Article
Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 93 Issue 13 Pages 131101
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 436
Permanent link to this record
 

 
Author Floet, D. Wilms; Baselmans, J. J. A.; Klapwijk, T. M.; Gao, J. R.
Title Resistive transition of niobium superconducting hot-electron bolometer mixers Type Journal Article
Year 1998 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages 2826
Keywords HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 543
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Tichelaar, F. D.; Klapwijk, T. M.; Voronov, B.; Grishin, E.; Gol’tsman, G.; Zorman, C. A.; Mehregany, M.
Title Monocrystalline NbN nanofilms on a 3C-SiC∕Si substrate Type Journal Article
Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 91 Issue 6 Pages 062504 (1 to 3)
Keywords NbN films, nanofilms
Abstract The authors have realized NbN (100) nanofilms on a 3C-SiC (100)/Si(100) substrate by dc reactive magnetron sputtering at 800°C. High-resolution transmission electron microscopy (HRTEM) is used to characterize the films, showing a monocrystalline structure and confirming epitaxial growth on the 3C-SiC layer. A film ranging in thickness from 3.4to4.1nm shows a superconducting transition temperature of 11.8K, which is the highest reported for NbN films of comparable thickness. The NbN nano-films on 3C-SiC offer a promising alternative to improve terahertz detectors. For comparison, NbN nanofilms grown directly on Si substrates are also studied by HRTEM.

The authors acknowledge S. V. Svetchnikov at National Centre for HRTEM at Delft, who prepared the specimens for HRTEM inspections. This work was supported by the EU through RadioNet and INTAS.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1425
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Baryshev, A.; Gao, J. R.; Klapwijk, T. M.; Kooi, J. W.; Jellema, W.; Yang, Z. Q.
Title Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer Type Journal Article
Year 2006 Publication J. Appl. Phys. Abbreviated Journal
Volume 100 Issue 7 Pages 074507
Keywords HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 385
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Dieleman, P.; Baryshev, A.; de Lange, G.
Title IF impedance and mixer gain of NbN hot electron bolometers Type Journal Article
Year 2007 Publication J. Appl. Phys. Abbreviated Journal
Volume 101 Issue 4 Pages 044511
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 445
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Baryshev, A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers Type Journal Article
Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 100 Issue 8 Pages 084510 (1 to 7)
Keywords NbN HEB mixers
Abstract We present a detailed experimental study of the direct detection effect in a small volume (0.15μm×1μm×3.5nm) quasioptical NbN phonon cooled hot electron bolometer mixer at 673GHz. We find that the small signal noise temperature, relevant for an astronomical observation, is 20% lower than the noise temperature obtained using 300 and 77K calibration loads. In a separate set of experiments we show that the direct detection effect is caused by a combination of bias current reduction when switching from the 77 to the 300K

load in combination with the bias current dependence of the receiver gain. The bias current dependence of the receiver gain is shown to be mainly caused by the current dependence of the mixer gain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1442
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title Stability of heterodyne terahertz receivers Type Journal Article
Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 100 Issue 6 Pages 064904 (1 to 9)
Keywords NbN HEB mixers
Abstract In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1∕f spectral distribution. In a 60MHz noise bandwidth this results in an Allan variance stability time of ∼0.3s. Measurement of the spectroscopic Allan variance between two intermediate frequency (IF) channels results in a much longer Allan variance stability time, i.e., 3s between a 2.5 and a 4.7GHz channel, and even longer for more closely spaced channels. This implies that the HEB mixer 1∕f noise is strongly correlated across the IF band and that the correlation gets stronger the closer the IF channels are spaced. In the second part of the paper we discuss atmospheric and mechanical system stability requirements on the LO-mixer cavity path length. We calculate the mixer output noise fluctuations as a result of small perturbations of the LO-mixer standing wave, and find very stringent mechanical and atmospheric tolerance requirements for receivers operating at terahertz frequencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1444
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages S224-S228
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance between the bolometer itself and the contact structure. Using a combination of in situ cleaning of the NbN film and the use of an additional superconducting interlayer of a 10 nm NbTiN layer between the Au of the contact structure and the NbN film superior noise temperatures have been obtained as low as 950 K at 2.5 THz and 750 K at 1.9 THz. Here we address in detail the DC characterization of these devices, the interface transparencies between the bolometers and the contacts and the consequences of these factors on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 558
Permanent link to this record