|   | 
Details
   web
Records
Author Wei, Jian; Olaya, David; Karasik, Boris S.; Pereverzev, Sergey V.; Sergeev, Andrei V.; Gershenson, Michael E.
Title Ultrasensitive hot-electron nanobolometers for terahertz astrophysics Type Journal Article
Year 2008 Publication Nature Nanotechnology Abbreviated Journal Nature Nanotech
Volume 3 Issue 8 Pages 496-500
Keywords HEB, Ti/NbN, single terahertz photons, detection
Abstract The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers – devices for measuring the energy of electromagnetic radiation—with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment;

second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron–phonon interactions, becomes very small at low temperatures (10-16 WK-1 at 40 mK). These devices, with a heat capacity of 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1748-3387 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 576
Permanent link to this record
 

 
Author Antipov, A. V.; Seleznev, V. A.; Vakhtomin, Y. B.; Morozov, P. V.; Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Smirnov, K.
Title Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range Type Conference Article
Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.
Volume 781 Issue Pages 012011 (1 to 5)
Keywords WSi, NbN SSPD, SNSPD
Abstract Spectral characteristics of WSi and NbN superconducting single-photon detectors with different surface resistance and width of nanowire strips have been investigated in the wavelength range of 1.3-2.5 μm. WSi structures with narrower strips demonstrated better performance for detection of single photons in longer wavelength range. The difference in normalized photon count rate for such structures reaches one order of magnitude higher in comparison with structures based on NbN thin films at 2.5 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1757-899X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1799
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Yao, Q. J.; Lin, Z. H.; Shi, S. C.; Gao, J. R.; Goltsman, G. N.
Title Spectral response and noise temperature of a 2.5 THz spiral antenna coupled NbN HEB mixer Type Journal Article
Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia
Volume 36 Issue Pages 334-337
Keywords NbN HEB mixer
Abstract We report on a 2.5 THz spiral antenna coupled NbN hot electron bolometer (HEB) mixers, fabricated with in-situ process. The receiver noise temperature with lowest value of 1180 K is in good agreement with calculated quantum efficiency factor as a function of bias voltage. In addition, the measured spectral response of the spiral antenna coupled NbN HEB mixer shows broad frequency coverage of 0.8-3 THz, and corrected response for optical losses, FTS, and coupling efficiency between antenna and bolometer falls with frequency due to diffraction-limited beam of lens/antenna combination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1875-3892 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1381
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G.
Title NbN nanowire superconducting single-photon detector for mid-infrared Type Journal Article
Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia
Volume 36 Issue Pages 72-76
Keywords NbN SSPD, SNSPD
Abstract Superconducting single-photon detectors (SSPD) is typically 100 nm-wide supercondiucting strip in a shape of meander made of 4-nm-thick film. To reduce response time and increase voltage response a parallel connection of the strips was proposed. Recently we demonstrated that reduction of the strip width improves the quantum effciency of such a detector at wavelengths longer than 1.5 μm. Being encourage by this progress in quantum effciency we improved the fabrication process and made parallel-wire SSPD with 40-nm-wide strips covering total area of 10 μm x 10 μm. In this paper we present the results of the characterization of such a parallel-wire SSPD at 10.6 μm wavelength and demonstrate linear dependence of the count rate on the light power as it should be in case of single-photon response.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1875-3892 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1382
Permanent link to this record
 

 
Author Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N.
Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS
Volume 1 Issue 5 Pages 587-590
Keywords NbN HEB mixers
Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.
Address Hangzhou, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1931-7360 ISBN Medium
Area Expedition Conference Progress In Electromagnetics Research Symposium
Notes Approved no
Call Number Serial 1482
Permanent link to this record