|   | 
Details
   web
Records
Author Ozhegov, R. V.; Gorshkov, K. N.; Okunev, O. V.; Gol’tsman, G. N.
Title Superconducting hot-electron bolometer mixer as element of thermal imager matrix Type Journal Article
Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 36 Issue 11 Pages 1006-1008
Keywords HEB mixers
Abstract The possibility of using a matrix of sensitive elements on a 12-mm-diameter hyperhemispherical lens in a thermal imager operating in the terahertz range has been studied. Dimensions of a lens region acceptable for arrangement of the matrix, in which the receiver noise temperature varies within 16% of the mean value, are determined to be 3.3% of the lens diameter. Deviations of the main lobe of the directivity pattern are evaluated, which amount to ±1.25° relative to the direction toward the optimum position of a mixer. The fluctuation sensitivity of the receiver measured in experiment is 0.5 K at a frequency of 300 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1063-7850 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1390
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S.
Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 57 Issue 7 Pages 971-974
Keywords semiconducting superlattice frequency multiplier, NbN HEB mixers
Abstract We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1378
Permanent link to this record
 

 
Author Smirnov, A. V.; Karmantsov, M. S.; Smirnov, K. V.; Vakhtomin, Y. B.; Masterov, D. V.; Tarkhov, M. A.; Pavlov, S. A.; Parafin, A. E.
Title Terahertz response of thin-film YBCO bolometers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 57 Issue 12 Pages 1716-1719
Keywords YBCO HEB
Abstract The bolometric response of high-temperature thin-film YBCO superconducting detectors to an electromagnetic radiation with a frequency of 2.5 THz is measured for the first time. The minimum value of the noise-equivalent power of the detectors is 3.5 × 10−9 W/Hz−−−√. The feasibility of further increasing the sensitivity of the detectors is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1817
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Karasik, B. S.; Okunev, O. V.; Dzardanov, A. L.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.
Title NbN hot electron superconducting mixers for 100 GHz operation Type Journal Article
Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 5 Issue 2 Pages 3065-3068
Keywords NbN HEB mixers
Abstract NbN is a promising superconducting material for hot-electron superconducting mixers with an IF bandwidth larger than 1 GHz. In the 1OO GHz frequency range, the following parameters were obtained for 50 /spl Aring/ thick NbN films at 4.2 K: receiver noise temperature (DSB) /spl sim/1000 K; conversion loss /spl sim/10 dB; IF bandwidth /spl sim/1 GHz; and local oscillator power /spl sim/1 /spl mu/W. An increase of the critical current of the NbN film, increased working temperature, and a better mixer matching may allow a broader IF bandwidth up to 2 GHz, reduced conversion losses down to 3-5 dB and a receiver noise temperature (DSB) down to 200-300 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1051-8223 ISBN Medium
Area Expedition Conference
Notes About LO power required Approved no
Call Number Serial 255
Permanent link to this record
 

 
Author Kawamura, J. H.; Tong, C.-Y.E.; Blundell, R.; Cosmo Papa, D.; Hunter, T. R.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E.
Title An 800 GHz NbN phonon-cooled hot-electron bolometer mixer receiver Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 3753-3756
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver developed for astronomical applications to operate in the 350 /spl mu/m atmospheric window. The waveguide receiver employs a superconductive NbN phonon-cooled hot-electron bolometer mixer. The double sideband receiver noise temperature closely follows 1 kGHz/sup -1/ across 780-870 GHz, with the intermediate frequency centered at 1.4 GHz. The conversion loss is about 15 dB. The receiver was installed for operation at the University of Arizona/Max Planck Institute for Radio Astronomy Submillimeter Telescope facility. The instrument was successfully used to conduct test observations of a number of celestial sources in a number of astronomically important spectral lines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 288
Permanent link to this record