|   | 
Details
   web
Records
Author Li, T. F.; Pashkin, Yu. A.; Astafiev, O.; Nakamura, Y.; Tsai, J. S.; Im, H.
Title High-frequency metallic nanomechanical resonators Type Journal Article
Year 2008 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 92 Issue Pages 043112(1)-043112(3)
Keywords nanomechanical resonator, polycrystalline metal films
Abstract We developed a technology to fabricate fully metallic doubly clamped beams working as nanomechanical resonators. Measured with a magnetomotive detection scheme, the beams, made of polycrystalline metal films, show as good quality as previously reported ones made of single crystal materials, such as Si, GaAs, AlN, and SiC. Our method is compatible with the conventional fabrication process for nanoscale electronic circuits and thus offers a possibility of easily integrating the beams into superconducting charge and flux qubits and single-electron transistors as well as coupling them to coplanar waveguide resonators.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 621
Permanent link to this record
 

 
Author Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory
Title Low noise and wide bandwidth of NbN hot-electron bolometer mixers Type Journal Article
Year 2011 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 98 Issue Pages 033507 (1 to 3)
Keywords NbN HEB mixer
Abstract We report a record double sideband noise temperature of 600 K (5hν/kB) offered by a NbN hot-electron bolometer receiver at 2.5 THz. Allowing for standing wave effects, this value was found to be constant in the intermediate frequency range 1–7 GHz, which indicates that the mixer has an unprecedentedly large noise bandwidth in excess of 7 GHz. The insight into this is provided by gain bandwidth measurements performed at the superconducting transition. They show that the dependence of the bandwidth on the mixer length follows the model for an HEB mixer with diffusion and phonon cooling of the hot electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 638
Permanent link to this record
 

 
Author Kataoka, T; Kajikawa, K.; Kitagawa, J.; Kadoya, Y; Takemura, Y.
Title Improved sensitivity of terahertz detection by GaAs photoconductive antennas excited at 1560 nm Type Journal Article
Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 97 Issue Pages 201110 (1-3)
Keywords photoconductive antenna (PCA)
Abstract The terahertz detection by photoconductive antennas (PCAs) based on low-temperature grown (LTG) GaAs with 1.5 μm pulse excitation was revisited. We found that the detection efficiency can be improved by a factor of 10 (20 dB) by reducing the excitation spot size and the gap length of the PCA, maintaining the low noise feature of the PCA on LTG GaAs. As a result, the signal-to-noise ratio higher than 50 dB was obtained at a reasonable incident power of 9.5 mW, suggesting that the scheme is promising for the detection of terahertz waves in practical time domain systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 904
Permanent link to this record
 

 
Author Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
Title Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Journal Article
Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 86 Issue Pages 244104 (1 to 3)
Keywords HEB, QCL
Abstract We report the first demonstration of an all solid-stateheterodyne receiver that can be used for high-resolution spectroscopy above 2THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8THz as local oscillator. We measure a double sideband receiver noise temperature of 1400K at 2.8THz and 4.2K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 905
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E.
Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages 2814-2816
Keywords NbN HEB mixers, noise temperature, local oscillator power
Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 911
Permanent link to this record