|   | 
Details
   web
Records
Author Floet, D. Wilms; Baselmans, J. J. A.; Klapwijk, T. M.; Gao, J. R.
Title Resistive transition of niobium superconducting hot-electron bolometer mixers Type Journal Article
Year 1998 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages 2826
Keywords HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 543
Permanent link to this record
 

 
Author Mason, Whitney; Waterman, J. R.
Title Electrical and optical characteristics of two color mid wave HgCdTe infrared detectors Type Journal Article
Year 1999 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 74 Issue 11 Pages 1633-1635
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ Serial 461
Permanent link to this record
 

 
Author Zwiller, Vale<cc><81>ry; Blom, Hans; Jonsson, Per; Panev, Nikolay; Jeppesen, Sören; Tsegaye, Tedros; Goobar, Edgard; Pistol, Mats-Erik; Samuelson, Lars; Björk, Gunnar
Title Single quantum dots emit single photons at a time: Antibunching experiments Type Journal Article
Year 2001 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 78 Issue 17 Pages 2476
Keywords antibunching, quantum dot
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 502
Permanent link to this record
 

 
Author Zwiller, V.; Aichele, T.; Seifert, W.; Persson, J.; Benson, O.
Title Generating visible single photons on demand with single InP quantum dots Type Journal Article
Year 2003 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 82 Issue 10 Pages 1509-1511
Keywords single photon, quantum dot, InP
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 503
Permanent link to this record
 

 
Author Korneev, A.; Kouminov, P.; Matvienko, V.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol'tsman, G. N.; Currie, M.; Lo, W.; Wilsher, K.; Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, Roman
Title Sensitivity and gigahertz counting performance of NbN superconducting single-photon detectors Type Journal Article
Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 84 Issue 26 Pages 5338-5340
Keywords SSPD, NEP, QE
Abstract We have measured the quantum efficiencysQEd, GHz counting rate, jitter, and noise-equivalentpowersNEPdof nanostructured NbN superconducting single-photon detectorssSSPDsdin thevisible to infrared radiation range. Our 3.5-nm-thick and 100- to 200-nm-wide meander-typedevices(total area 10310mm2), operating at 4.2 K, exhibit an experimental QE of up to 20% inthe visible range and,10% at 1.3 to 1.55mm wavelength and are potentially sensitive up tomidinfrareds,10mmdradiation. The SSPD counting rate was measured to be above 2 GHz withjitter,18 ps, independent of the wavelength. The devices’ NEP varies from,10−17W/Hz1/2for1.55mm photons to,10−20W/Hz1/2for visible radiation. Lowering the SSPD operatingtemperature to 2.3 K significantly enhanced its performance, by increasing the QE to,20% andlowering the NEP level to,3310−22W/Hz1/2, both measured at 1.26mm wavelength.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 532
Permanent link to this record
 

 
Author Rodriguez-Morales, F.; Zannoni, R.; Nicholson, J.; Fischetti, M.; Yngvesson, K. S.; Appenzeller, J.
Title Direct and heterodyne detection of microwaves in a metallic single wall carbon nanotube Type Journal Article
Year 2006 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 89 Issue 8 Pages 083502
Keywords carbon nanotube, GHz heterodyne detector, direct detector
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 565
Permanent link to this record
 

 
Author Fu, K.; Zannoni, R.; Chan, C.; Adams, S. H.; Nicholson, J.; Polizzi, E.; Yngvesson, K. S.
Title Terahertz detection in single wall carbon nanotubes Type Journal Article
Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 92 Issue 3 Pages 033105
Keywords HEB, single wall, carbon nanotube, CNT, SWNT, SWCNT, terahertz detection, THz
Abstract It is reported that terahertz radiation from 0.69 to 2.54 THz has been sensitively detected in a device consisting of bundles of carbon nanotubes containing single wall metallic carbon nanotubes, quasioptically coupled through a lithographically fabricated antenna, and a silicon lens. The measured data are consistent with a bolometric detection process in the metallic tubes and the devices show promise for operation well above 4.2 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes NEP is not shown Approved no
Call Number Serial 566
Permanent link to this record
 

 
Author Siddiqi, I.; Prober, D. E.
Title Nb–Au bilayer hot-electron bolometers for low-noise THz heterodyne detection Type Journal Article
Year 2004 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 84 Issue 8 Pages 1404
Keywords HEB, mixers, dynamic range, saturation, LO power, local oscillator power, Nb
Abstract The sensitivity of present Nb diffusion-cooled hot-electron bolometer (HEB) mixers is not quantum limited, and can be improved by reducing the superconducting transition temperature TC. Lowering TC reduces thermal fluctuations, resulting in a decrease of the mixer noise temperature TM. However, lower TC mixers have reduced dynamic range and saturate more easily due to background noise. We present 30 GHz microwave measurements on a bilayer HEB system, Nb–Au, in which TC can be tuned with Au layer thickness to obtain the maximum sensitivity for a given noise background. These measurements are intended as a guide for the optimization of THz mixers. Using a Nb–Au mixer with TC = 1.6 K, we obtain TM = 50 K with 2 nW of local oscillator (LO) power. Good mixer performance is observed over a wide range of LO power and bias voltage and such a device should not exhibit saturation in a THz receiver.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 571
Permanent link to this record
 

 
Author Il'in, K. S.; Lindgren, M.; Currie, M. A.; Semenov, D.; Gol'tsman, G. N.; Sobolewski, Roman; Cherednichenko, S. I.; Gershenzon, E. M.
Title Picosecond hot-electron energy relaxation in NbN superconducting photodetectors Type Journal Article
Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 76 Issue 19 Pages 2752-2754
Keywords NbN HEB detectors, two-temperature model, IF bandwidth
Abstract We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time Ï„e–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time Ï„es decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, Ï„e–ph and Ï„es, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of Ï„e–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/–3) GHz if one eliminates the bolometric phonon-heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 856
Permanent link to this record
 

 
Author Ferrari, S.; Kahl, O.; Kovalyuk, V.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P.
Title Waveguide-integrated single- and multi-photon detection at telecom wavelengths using superconducting nanowires Type Journal Article
Year 2015 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 106 Issue 15 Pages 151101 (1 to 5)
Keywords SSPD, SNSPD
Abstract We investigate single- and multi-photon detection regimes of superconducting nanowire detectors embedded in silicon nitride nanophotonic circuits. At near-infrared wavelengths, simultaneous detection of up to three photons is observed for 120 nm wide nanowires biased far from the critical current, while narrow nanowires below 100 nm provide efficient single photon detection. A theoretical model is proposed to determine the different detection regimes and to calculate the corresponding internal quantum efficiency. The predicted saturation of the internal quantum efficiency in the single photon regime agrees well with plateau behavior observed at high bias currents.

W. H. P. Pernice acknowledges support by the DFG Grant Nos. PE 1832/1-1 and PE 1832/1-2 and the Helmholtz society through Grant No. HIRG-0005. The Ph.D. education of O. Kahl is embedded in the Karlsruhe School of Optics and Photonics (KSOP). G. N. Goltsman acknowledges support by Russian Federation President Grant HШ-1918.2014.2 and Ministry of Education and Science of the Russian Federation Contract No.: RFMEFI58614X0007. A. Korneev acknowledges support by Statement Task No. 3.1846.2014/k. V. Kovalyuk acknowledges support by Statement Task No. 2327. We also acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) and the State of Baden-Württemberg through the DFG-Center for Functional Nanostructures (CFN) within subproject A6.4. We thank S. Kühn and S. Diewald for the help with device fabrication as well as B. Voronov and A. Shishkin for help with NbN thin film deposition and A. Semenov for helpful discussion about the detection mechanism of nanowire SSPD's.

The authors declare no competing financial interests.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1211
Permanent link to this record
 

 
Author Elvira, D.; Michon, A.; Fain, B.; Patriarche, G.; Beaudoin, G.; Robert-Philip, I.; Vachtomin, Y.; Divochiy, A. V.; Smirnov, K. V.; Gol’tsman, G. N.; Sagnes, I.; Beveratos, A.
Title Time-resolved spectroscopy of InAsP/InP(001) quantum dots emitting near 2 μm Type Journal Article
Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 97 Issue 13 Pages 131907 (1 to 3)
Keywords SSPD, SNSPD, InAsP/InP quantum dots
Abstract By using superconducting single photon detectors, we perform time-resolved characterization of a small ensemble of InAsP/InP quantum dots grown by metal organic vapor phase epitaxy, emitting at wavelengths between 1.6 and 2.2 μm. We demonstrate that alloying phosphorus with InAs allows to shift the emission wavelength toward higher wavelengths, while keeping the high optical quality of these quantum dots at room temperature, with no decrease in their radiative lifetime. This work was partially supported by Russian Ministry of Science and Education: Federal State Program “Scientific and Educational Cadres of Innovative” state Contract Nos. 02.740.0228, 14.740.11.0343, 14.740.11.0269, and P931, and RFBR Project No. 09-02-12364.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1238
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Charayev, I.; Voronov, B.M.; Finkel, M.; Klapwijk, T.M.; Morozov, S.; Presniakov, M.; Bobrinetskiy, I.; Ibragimov, R.; Goltsman, G.
Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-terahertz radiation Type Journal Article
Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 103 Issue 18 Pages 181121 (1 to 5)
Keywords carbon nanotubes, CNT, THz radiation, SiO2 substrate
Abstract We report on the voltage response of carbon nanotube devices to sub-terahertz (THz) radiation. The devices contain carbon nanotubes (CNTs), which are over their length partially suspended and partially Van der Waals bonded to a SiO2 substrate, causing a difference in thermal contact. We observe a DC voltage upon exposure to 140 GHz radiation. Based on the observed gate voltage and power dependence, at different temperatures, we argue that the observed signal is both thermal and photovoltaic. The room temperature responsivity in the microwave to THz range exceeds that of CNT based devices reported before. Authors thank Professor P. Barbara for providing the catalyst for CNT growth and Dr. N. Chumakov and V. Rylkov for stimulating discussions. The work was supported by the RFBR (Grant No. 12-02-01291-a) and by the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007). G.F. acknowledges support of the RFBR grant 12-02-01005-a.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1171
Permanent link to this record
 

 
Author Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lee, C.; Rockstuhl, C.; Semenov, A.; Gol'tsman, G.; Pernice, W.
Title Analysis of the detection response of waveguide-integrated superconducting nanowire single-photon detectors at high count rate Type Journal Article
Year 2019 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 115 Issue 10 Pages 101104
Keywords SSPD, SNSPD, waveguide
Abstract Nanophotonic circuitry and superconducting nanowires have been successfully combined for detecting single photons, propagating in an integrated photonic circuit, with high efficiency and low noise and timing uncertainty. Waveguide-integrated superconducting nanowire single-photon detectors (SNSPDs) can nowadays be engineered to achieve subnanosecond recovery times and can potentially be adopted for applications requiring Gcps count rates. However, particular attention shall be paid to such an extreme count rate regime since artifacts in the detector functionality emerge. In particular, a count-rate dependent detection efficiency has been encountered that can compromise the accuracy of quantum detector tomography experiments. Here, we investigate the response of waveguide-integrated SNSPDs at high photon flux and identify the presence of parasitic currents due to the accumulation of charge in the readout electronics to cause the above-mentioned artifact in the detection efficiency. Our approach allows us to determine the maximum photon count rate at which the detector can be operated without adverse effects. Our findings are particularly important to avoid artifacts when applying SNSPDs for quantum tomography.

We acknowledge support through ERC Consolidator Grant No. 724707 and from the Deutsche Forschungsgemeinschaft through Project No. PE 1832/5-1,2, as well as funding by the Volkswagen Foundation. This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Grant Agreement No. 675745. V.K. and G.G. acknowledge support from the Russian Science Foundation Project No. 16-12-00045 (NbN film deposition and testing). A.V. acknowledges support from the Karlsruhe School of Optics and Photonics (KSOP).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1185
Permanent link to this record
 

 
Author Smirnov, K. V.; Divochiy, A. V.; Vakhtomin, Y. B.; Sidorova, M. V.; Karpova, U. V.; Morozov, P. V.; Seleznev, V. A.; Zotova, A. N.; Vodolazov, D. Y.
Title Rise time of voltage pulses in NbN superconducting single photon detectors Type Journal Article
Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 109 Issue 5 Pages 052601
Keywords SSPD, SNSPD
Abstract We have found experimentally that the rise time of voltage pulse in NbN superconducting single photon detectors increases nonlinearly with increasing the length of the detector L. The effect is connected with dependence of resistance of the detector Rn, which appears after photon absorption, on its kinetic inductance Lk and, hence, on the length of the detector. This conclusion is confirmed by our calculations in the framework of two temperature model.

D.Yu.V. acknowledges the support from the Russian Foundation for Basic Research (Project No. 15-42-02365). K.V.S. acknowledges the financial support from the Ministry of Education and Science of the Russian Federation (Contract No. 3.2655.2014/K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1236
Permanent link to this record
 

 
Author Bandurin, D. A.; Gayduchenko, I.; Cao, Y.; Moskotin, M.; Principi, A.; Grigorieva, I. V.; Goltsman, G.; Fedorov, G.; Svintsov, D.
Title Dual origin of room temperature sub-terahertz photoresponse in graphene field effect transistors Type Journal Article
Year 2018 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 112 Issue 14 Pages 141101 (1 to 5)
Keywords graphene field effect transistors, FET
Abstract Graphene is considered as a promising platform for detectors of high-frequency radiation up to the terahertz (THz) range due to its superior electron mobility. Previously, it has been shown that graphene field effect transistors (FETs) exhibit room temperature broadband photoresponse to incoming THz radiation, thanks to the thermoelectric and/or plasma wave rectification. Both effects exhibit similar functional dependences on the gate voltage, and therefore, it was difficult to disentangle these contributions in previous studies. In this letter, we report on combined experimental and theoretical studies of sub-THz response in graphene field-effect transistors analyzed at different temperatures. This temperature-dependent study allowed us to reveal the role of the photo-thermoelectric effect, p-n junction rectification, and plasmonic rectification in the sub-THz photoresponse of graphene FETs.

D.A.B. acknowledges the Leverhulme Trust for financial support. The work of D.S. was supported by Grant No. 16-19-10557 of the Russian Scientific Foundation (theoretical model). G.F., I.G., M.M., and G.G. acknowledge the Russian Science Foundation [Grant No. 14-19-01308 (MIET, cryostat upgrade) and Grant No. 17-72-30036, (MSPU, photoresponse measurements), the Ministry of Education and Science of the Russian Federation (Contract No. 14.B25.31.0007 (device fabrication) and Task No. 3.7328.2017/LS (NEP analyses)] and the Russian Foundation for Basic Research [Grant No. 15-02-07841 (device design)]. The authors are grateful to Professor M. S. Shur for helpful discussions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1309
Permanent link to this record