toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.; Becker, W. url  doi
openurl 
  Title Erratum: “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector” [Rev. Sci. Instrum. 87, 053117 (2016)] Type Miscellaneous
  Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 87 Issue 6 Pages 069901  
  Keywords SSPD, SNSPD, TCSPC, jitter  
  Abstract In the original paper1the Ref. 10 should be M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, Proc. SPIE9370, 93701T (2015).  
  Address Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0034-6748 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27370512 Approved no  
  Call Number Serial 1810  
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Tarkhov, M.; Divochiy, A.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G. url  doi
openurl 
  Title Superconducting single photon nanowire detectors development for IR and THz applications Type Journal Article
  Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue 1-2 Pages 591-596  
  Keywords NbN SSPD, SNSPD  
  Abstract We present our progress in the development of superconducting single-photon detectors (SSPDs) based on meander-shaped nanowires made from few-nm-thick superconducting films. The SSPDs are operated at a temperature of 2–4.2 K (well below T c ) being biased with a current very close to the nanowire critical current at the operation temperature. To date, the material of choice for SSPDs is niobium nitride (NbN). Developed NbN SSPDs are capable of single photon counting in the range from VIS to mid-IR (up to 6 μm) with a record low dark counts rate and record-high counting rate. The use of a material with a low transition temperature should shift the detectors sensitivity towards longer wavelengths. We present state-of-the art NbN SSPDs as well as the results of our recent approach to expand the developed SSPD technology by the use of superconducting materials with lower T c , such as molybdenum rhenium (MoRe). MoRe SSPDs first were made and tested; a single photon response was obtained.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1244  
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N. url  doi
openurl 
  Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
  Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 128 Issue 22 Pages 224303 (1 to 11)  
  Keywords HEB, resonant tunneling diode, RTD  
  Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1262  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K. V. url  doi
openurl 
  Title Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures Type Journal Article
  Year 2001 Publication Jetp Lett. Abbreviated Journal Jetp Lett.  
  Volume 74 Issue 9 Pages 474-479  
  Keywords 2DEG, AlGaAs/GaAs heterostructures  
  Abstract Theoretical and experimental works devoted to studying electron-phonon interaction in the two-dimensional electron gas of semiconductor heterostructures at low temperatures in the case of strong heating in an electric field under quasi-equilibrium conditions and in a quantizing magnetic field perpendicular to the 2D layer are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes По итогам проектов российского фонда фундаментальных исследований. Проект РФФИ # 98-02-16897 Электрон-фононное взаимодействие в двумерном электронном газе полупроводниковых гетероструктур при низких температурах Approved no  
  Call Number Serial 1541  
Permanent link to this record
 

 
Author Smirnov, K. V.; Ptitsina, N. G.; Vakhtomin, Y. B.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Energy relaxation of two-dimensional electrons in the quantum Hall effect regime Type Journal Article
  Year 2000 Publication JETP Lett. Abbreviated Journal JETP Lett.  
  Volume 71 Issue 1 Pages 31-34  
  Keywords 2DEG, GaAs/AlGaAs heterostructures  
  Abstract The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ −1e oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ −1e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ −1e when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ −1e (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (down) 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes http://jetpletters.ru/ps/899/article_13838.shtml (“Энергетическая релаксация двумерных электронов в области квантового эффекта Холла”) Approved no  
  Call Number Serial 1559  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: