|   | 
Details
   web
Records
Author Budyanskij, M. Ya.; Sejdman, L. A.; Voronov, B. M.; Gubkina, T. O.
Title Increase of reproducibility in production of superconducting thin films of niobium nitride Type Journal Article
Year 1992 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika
Volume 5 Issue 10 Pages 1950-1954
Keywords NbN films
Abstract Technique to control the composition of gas medium in the reactive magnetron discharge and the composition of the deposited films of niobium nitride using electrical parameters of discharge only, in particular, by δU = Up – Uar value at contant stabilized discharge current is described. Technique to select optimal condition for deposition of niobium nitride films when the films have composition meeting chemical formula, is suggested. Thin films of niobium nitride with up to 7 nm thickness and with rather high temperature of transition into superconducting state Tk > 10 K) and with low width of transition (δ < 0.6 K), are obtained. It is determined, that substrate material and dielectric sublayer do not affect. Tk value, while difference in coefficients of thermal expansion of substrate and of film affects δTk value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0131-5366 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1675
Permanent link to this record
 

 
Author Zhang, Wen; Li, Ning; Jiang, Ling; Miao, Wei; Lin, Zhen-Hui; Yao, Qi-Jun; Shi, Sheng-Cai; Chen, Jian; Wu, Pei-Heng; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.
Title Noise behaviour of a THz superconducting hot-electron bolometer mixer Type Journal Article
Year 2007 Publication Chinese Phys. Lett. Abbreviated Journal Chinese Phys. Lett.
Volume 24 Issue 6 Pages 1778-1781
Keywords NbN HEB mixers
Abstract A quasi-optical superconducting NbN hot-electron bolometer (HEB) mixer is measured in the frequency range of 0.5–2.5 THz for understanding of the frequency dependence of noise temperature of THz coherent detectors. It has been found that noise temperature increasing with frequency is mainly due to the coupling loss between the quasi-optical planar antenna and the superconducting HEB bridge when taking account of non-uniform distribution of high-frequency current. With the coupling loss corrected, the superconducting HEB mixer demonstrates a noise temperature nearly independent of frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0256-307X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1430
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M.
Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 372-376 Issue Pages 448-453
Keywords NbN HEB mixers, applications
Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1526
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Semenov, A.; Kovalyuk, V.; Kahl, O.; Ferrari, S.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B. M.; Pernice, W. H. P.; Gol'tsman, G. N.
Title Superconducting nanowire single photon detector for coherent detection of weak signals Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-5
Keywords NbN SSPD mixer, SNSPD, nanophotonic waveguide
Abstract Traditional photon detectors are operated in the direct detection mode, counting incident photons with a known quantum efficiency. Here, we have investigated a superconducting nanowire single photon detector (SNSPD) operated as a photon counting mixer at telecommunication wavelength around 1.5 μm. This regime of operation combines excellent sensitivity of a photon counting detector with excellent spectral resolution given by the heterodyne technique. Advantageously, we have found that low local oscillator (LO) power of the order of hundreds of femtowatts to a few picowatts is sufficient for clear observation of the incident test signal with the sensitivity approaching the quantum limit. With further optimization, the required LO power could be significantly reduced, which is promising for many practical applications, such as the development of receiver matrices or recording ultralow signals at a level of less-than-one-photon per second. In addition to a traditional NbN-based SNSPD operated with normal incidence coupling, we also use detectors with a travelling wave geometry, where a NbN nanowire is placed on the top of a Si 3 N 4 nanophotonic waveguide. This approach is fully scalable and a large number of devices could be integrated on a single chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1206
Permanent link to this record
 

 
Author Jiang, L.; Antipov, S. V.; Voronov, B. M.; Gol'tsman, G. N.; Zhang, W.; Li, N.; Lin, Z. H.; Yao, Q. J.; Miao, W.; Shi, S. C.; Svechnikov, S. I.; Vakhtomin, Y. B.
Title Characterization of the performance of a quasi-optical NbN superconducting HEB mixer Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 395-398
Keywords NbN HEB mixers, noise temperature
Abstract In this paper we focus mainly on the investigation of the performance of a quasi-optical (planar log-spiral antenna) phonon-cooled NbN superconducting hot electron bolometer (HEB) mixer, which is cryogenically cooled by a close-cycled 4-K cryocooler, at 500 and 850 GHz frequency bands. The mixer's noise performance, stability of IF output power, and local oscillator (LO) power requirement are characterized for three NbN superconducting HEB devices of different sizes. The transmission characteristics of Mylar and Zitex films with incidence waves of an elliptical polarization are also examined by measuring the mixer's noise temperature. The lowest receiver noise temperatures (with no corrections) of 750 and 1100 K are measured at 500 and 850 GHz, respectively. Experimental results also demonstrate that the bigger the HEB device is, the higher the stability of IF output power becomes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1429
Permanent link to this record