|   | 
Details
   web
Records
Author Baryshev, A.; Baselmans, J. J. A.; Reker, S. F.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Vachtomin, Yu.; Maslennikov, S.; Antipov, S.; Voronov, B.; Gol'tsman, G.
Title Direct detection effect in hot electron bolometer mixers Type Abstract
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 463-464
Keywords NbN HEB mixers, effect of direct detection, direct detection effect
Abstract NbN phonon cooled hot electron bolometer (HEB) mixers are currently the most sensitive heterodyne detectors at frequencies above 1.2 THz. They combine a good sensitivity (8-15 times the quantum limit), an IF bandwidth of the order of 4-6 GHz and a wide RF bandwidth from 0.7-5.2 THz. However, for use in a space based observatory, such as Herschel, it is of vital importance that the Local Oscillator (LO) power requirement of the mixer is compatible with the low output power of present day THz LO sources. This can be achieved by reducing the mixer volume and critical current. However, the large RF bandwidth and low LO power requirement of such a mixer result in a direct detection effect, characterized by a change in the bias current of the HEB when changing the RF signal from a black body load at 300 K to one at 77 K. As a result the measured sensitivity using a 300 K and 77 K calibration load differs significantly from the small signal sensitivity relevant for astronomical observations. In this article we describe a set of dedicated experiments to characterize the direct detection effect for a small volume quasi-optical NbN phonon cooled HEB mixer. We measure the direct detection effect in a small volume (0.15 μm · 1 μm · 3.5 nm) quasi- optical NbN phonon cooled HEB mixer at 1.6 THz. We found that the small signal sensitivity of the receiver is underestimated by approximately 35% due to the direct detection effect and that the optimal operating point is shifted to higher bias voltages when using calibration loads of 300 K and 77 K. Using a 200 GHz wide band-pass filter at the 4.2 K the direct detection effect virtually disappears. Heterodyne response measurements using water vapor absorption line in a gas cell confirms the existence and a magnitude of a direct detection effect. We also propose a theoretical explanation using uniform electron heating model. This direct detection effect has important implications for the calibration procedure of these receivers in real telescope systems. We are developing Nb HEBs for a large-format, diffusion-cooled hot electron bolometer (HEB) array submillimeter camera. The goal is to produce a 64 pixel array together with the University of Arizona to be used on the HHT on Mt Graham. It is designed to detect in the 850 GHz atmospheric window. We have fabricated Nb HEBs using a new angle- deposition process, which had previously produced high quality Nb-Au bilayer HEB devices at Yale. [1] We have characterized these devices using heterodyne mixing at ~30 GHz to compare to 345 GHz tests at the University of Arizona. We can also directly compare our Nb HEB mixers to SIS mixers in this same 345 GHz system. This allows us to rigorously calibrate the system’s losses and extract the mixer noise temperature in a well characterized mixer block, before undertaking the 850 GHz system. Here we give a report on the initial devices we have fabricated and characterized. * Department of Applied Physics, Yale University ** Department of Astronomy, University of Arizona [1] Applied Physics Letters 84, Number 8; p.1404-7, Feb 23 (2004)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1475
Permanent link to this record
 

 
Author Gol'tsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Słysz, W.; Kitaygorsky, J.; Cross, A.; Pearlman, A.; Sobolewski, Roman
Title Superconducting nanostructured detectors capable of single-photon counting in the THz range Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 555-557
Keywords NbN SSPD, SNSPD
Abstract We present the results of the NbN superconducting single-photon detector sensitivity measurement in the visible to mid-IR range. For visible and near IR light (0.56 — 1.3μm wavelengths) the detector exhibits 30% quantum efficiency saturation value limited by the NbN film absorption and extremely low level of dark counts (2x10 -4 s -1). The detector manifested single-photon counting up to 6 μm wavelength with the quantum efficiency reaching 10 -2 % at 5.6 μm and 3 K temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1476
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Minaeva, O.; Rubtsova, I.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Voronov, B.; Lipatov, A. P.; Pearlman, A. J.; Cross, A.; Slysz, W.; Verevkin, A. A.; Sobolewski, R.
Title Advanced nanostructured optical NbN single-photon detector operated at 2.0 K Type Conference Article
Year 2005 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5732 Issue Pages 520-529
Keywords NbN SSPD, SNSPD
Abstract We present our studies on quantum efficiency (QE), dark counts, and noise equivalent power (NEP) of the latest generation of nanostructured NbN superconducting single-photon detectors (SSPDs) operated at 2.0 K. Our SSPDs are based on 4 nm-thick NbN films, patterned by electron beam lithography as highly-uniform 100÷120-nm-wide meander-shaped stripes, covering the total area of 10x10 μm2 with the meander filling factor of 0.7. Advances in the fabrication process and low-temperature operation lead to QE as high as  30-40% for visible-light photons (0.56 μm wavelength)-the saturation value, limited by optical absorption of the NbN film. For 1.55 μm photons, QE was  20% and decreased exponentially with the wavelength reaching  0.02% at the 5-μm wavelength. Being operated at 2.0-K temperature the SSPDs revealed an exponential decrease of the dark count rate, what along with the high QE, resulted in the NEP as low as 5x10-21 W/Hz-1/2, the lowest value ever reported for near-infrared optical detectors. The SSPD counting rate was measured to be above 1 GHz with the pulse-to-pulse jitter below 20 ps. Our nanostructured NbN SSPDs operated at 2.0 K significantly outperform their semiconducting counterparts and find practical applications ranging from noninvasive testing of CMOS VLSI integrated circuits to ultrafast quantum communications and quantum cryptography.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Razeghi, M.; Brown, G.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference Quantum Sensing and Nanophotonic Devices II
Notes Approved no
Call Number Serial 1478
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.; Yang, Z. Q.; Baryshev, A. M.; Barends, R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.; Callaos, N.
Title Twin-slot antenna coupled NbN hot electron bolometer mixers for space applications Type Conference Article
Year 2005 Publication Proc. 9-th WMSCI Abbreviated Journal Proc. 9-th WMSCI
Volume 9 Issue Pages 148-153
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher International Institute of Informatics and Systemics Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN 9806560639, 9789806560635 Medium
Area Expedition Conference 9th World Multi-Conference on Systemics, Cybernetics and Informatics
Notes Approved no
Call Number Serial 1480
Permanent link to this record
 

 
Author Hubers, H.-W.; Semenov, A.; Richter, H.; Schwarz, M.; Gunther, B.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Heterodyne receiver for 3-5 THz with hot-electron bolometer mixer Type Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5498 Issue Pages 579-586
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently build for SOFIA and Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. The local oscillator and the mixer are the most critical components for a heterodyne receiver operating at 3-5 THz. The design and performance of an optically pumped THz gas laser optimized for this frequency band will be presented. In order to optimize the performance for this frequency hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0 x 0.2 μm2 incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 K and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (up) ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II
Notes Approved no
Call Number Serial 1483
Permanent link to this record