toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Parker, W. H. doi  openurl
  Title Modified heating theory of nonequilibrium superconductors Type Journal Article
  Year 1975 Publication Phys. Rev. B Abbreviated Journal  
  Volume 12 Issue (down) 9 Pages 3667-3672  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher American Physical Society Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number mht_Parker_1975 Serial 221  
Permanent link to this record
 

 
Author Perrin, N.; Vanneste, C. doi  openurl
  Title Response of superconducting films to a periodic optical irradiation Type Journal Article
  Year 1983 Publication Phys. Rev. B Abbreviated Journal  
  Volume 28 Issue (down) 9 Pages 5150-5159  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number sc_resp_Perrin_1983 Serial 233  
Permanent link to this record
 

 
Author Sergeev, A.; Mitin, V. url  doi
openurl 
  Title Electron-phonon interaction in disordered conductors: Static and vibrating scattering potentials Type Journal Article
  Year 2000 Publication Phys. Rev. B. Abbreviated Journal Phys. Rev. B.  
  Volume 61 Issue (down) 9 Pages 6041-6047  
  Keywords disordered conductors, scattering potential, electron-phonon interaction  
  Abstract Employing the Keldysh diagram technique, we calculate the electron-phonon energy relaxation rate in a conductor with the vibrating and static δ-correlated random electron-scattering potentials. If the scattering potential is completely dragged by phonons, this model yields the Schmid’s result for the inelastic electron-scattering rate τ−1e−ph. At low temperatures the effective interaction decreases due to disorder, and τ−1e−ph∝T4l (l is the electron mean-free path). In the presense of the static potential, quantum interference of numerous scattering processes drastically changes the effective electron-phonon interaction. In particular, at low temperatures the interaction increases, and τ−1e−ph∝T2/l. Along with an enhancement of the interaction, which is observed in disordered metallic films and semiconducting structures at low temperatures, the suggested model allows us to explain the strong sensitivity of the electron relaxation rate to the microscopic quality of a particular film.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 307  
Permanent link to this record
 

 
Author Bell, M.; Sergeev, A.; Mitin, V.; Bird, J.; Verevkin, A.; Gol’tsman, G. url  doi
openurl 
  Title One-dimensional resistive states in quasi-two-dimensional superconductors: Experiment and theory Type Journal Article
  Year 2007 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 76 Issue (down) 9 Pages 094521 (1 to 5)  
  Keywords uasi-two-dimensional superconductors, NbN  
  Abstract We investigate competition between one- and two-dimensional topological excitations—phase slips and vortices—in the formation of resistive states in quasi-two-dimensional superconductors in a wide temperature range below the mean-field transition temperature TC0. The widths w=100nm of our ultrathin NbN samples are substantially larger than the Ginzburg-Landau coherence length ξ=4nm, and the fluctuation resistivity above TC0 has a two-dimensional character. However, our data show that the resistivity below TC0 is produced by one-dimensional excitations—thermally activated phase slip strips (PSSs) overlapping the sample cross section. We also determine the scaling phase diagram, which shows that even in wider samples the PSS contribution dominates over vortices in a substantial region of current and/or temperature variations. Measuring the resistivity within 7 orders of magnitude, we find that the quantum phase slips can only be essential below this level.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1423  
Permanent link to this record
 

 
Author Santhanam, P.; Wind, S.; Prober, D. E. openurl 
  Title Localization, superconducting fluctuations, and superconductivity in thin films and narrow wires of aluminum Type Journal Article
  Year 1987 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 35 Issue (down) 7 Pages 3188-3206  
  Keywords Al films; electron-phonon scattering; electron-electron scattering; Disordered structures; amorphous and glassy solids, Relaxation times and mean free paths, Galvanomagnetic and other magnetotransport effects  
  Abstract We report a comprehensive set of experiments on wide and narrow thin-film strips of aluminum which test the predictions of recent localization theory. The experiments on wide films in the two-dimensional regime confirm the theoretical predictions and also yield insight into inelastic mechanisms and spin-orbit scattering rates. Our extension of the existing theory for one-dimensional systems to include spin-orbit scattering and Maki-Thompson superconducting fluctuations is verified by the experiments. We find clear evidence for one-dimensional localization, with inferred inelastic rates identical to those in two-dimensional films. The prediction of the localization theory for a dimensional crossover from two-dimensional to one-dimensional behavior is also confirmed. We have reanalyzed the results of some previous experiments on thin films and narrow wires in light of these results.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 757  
Permanent link to this record
 

 
Author Romijn, J.; Klapwijk, T. M.; Renne, M. J.; Mooij, J. E. doi  openurl
  Title Critical pair-breaking current in superconducting aluminum strips far below Tc Type Journal Article
  Year 1982 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 26 Issue (down) 7 Pages 3648-3655  
  Keywords superconducting nanowire  
  Abstract Critical currents of narrow, thin aluminum strips have been measured as a function of temperature. For the smallest samples uniformity of the current density is obtained over a large temperature range. Hence the intrinsic limit on the currentcarrying capacity of the superconductor was measured outside the Ginzburg-Landau -regime. The experimental values are compared with recent theoretical predictions by Kupriyanov and Lukichev. An approximate method of solving their equations is given, the results of which agree with the exact solution to within 1%. Experimental data are in excellent agreement with theoretical predictions. The absolute values agree if one assumes a ρl value of 4×10–16 Ωm2 with vF=1.3×106 m/s. This value for ρl is the same as that found from measurements of the anomalous skin effect but differs from values extracted from size-effect-limited resistivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk Approved no  
  Call Number Serial 925  
Permanent link to this record
 

 
Author Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, T.; Bustarret, E. url  doi
openurl 
  Title Relaxation of the resistive superconducting state in boron-doped diamond films Type Journal Article
  Year 2016 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 93 Issue (down) 6 Pages 064506  
  Keywords boron-doped diamond films, resistive superconducting state, relaxation time  
  Abstract We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5×1021cm−3 and a critical temperature of about 2K. By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T−2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1167  
Permanent link to this record
 

 
Author Zhang, X.; Lita, A. E.; Smirnov, K.; Liu, H. L.; Zhu, D.; Verma, V. B.; Nam, S. W.; Schilling, A. url  doi
openurl 
  Title Strong suppression of the resistivity near the superconducting transition in narrow microbridges in external magnetic fields Type Journal Article
  Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 101 Issue (down) 6 Pages 060508 (1 to 6)  
  Keywords MoSi, WSi films  
  Abstract We have investigated a series of superconducting bridges based on homogeneous amorphous WSi and MoSi films, with bridge widths w ranging from 2 to 1000μm and film thicknesses d∼4−6 and 100 nm. Upon decreasing the bridge widths below the respective Pearl lengths, we observe in all cases distinct changes in the characteristics of the resistive transitions to superconductivity. For each of the films, the resistivity curves R(B,T) separate at a well-defined and field-dependent temperature T∗(B) with decreasing the temperature, resulting in a dramatic suppression of the resistivity and a sharpening of the transitions with decreasing bridge width w. The associated excess conductivity in all the bridges scales as 1/w, which may suggest either the presence of a highly conducting region that is dominating the electric transport, or a change in the vortex dynamics in narrow enough bridges. We argue that this effect can only be observed in materials with sufficiently weak vortex pinning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1800  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, Alexej D.; Hübers, H.-W.; Ilin, K.; Siegel, M.; Charaev, I.; Moshkova, M.; Kaurova, N.; Goltsman, G. N.; Zhang, X.; Schilling, A. url  doi
openurl 
  Title Electron energy relaxation in disordered superconducting NbN films Type Journal Article
  Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 102 Issue (down) 5 Pages 054501 (1 to 15)  
  Keywords NbN SSPD, SNSPD, HEB, bandwidth, relaxation time  
  Abstract We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product qTl (qT is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/τe−ph∼Tn with the exponents n≈3.2–3.8. We found that in this temperature range τe−ph and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1266  
Permanent link to this record
 

 
Author Il’in, K.S.; Ptitsina, N.G.; Sergeev, A.V.; Gol’tsman, G.N.; Gershenzon, E.M.; Karasik, B.S.; Pechen, E.V.; Krasnosvobodtsev, S.I. url  doi
openurl 
  Title Interrelation of resistivity and inelastic electron-phonon scattering rate in impure NbC films Type Journal Article
  Year 1998 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 57 Issue (down) 24 Pages 15623-15628  
  Keywords NbC films  
  Abstract A complex study of the electron-phonon interaction in thin NbC films with electron mean free path l=2–13nm gives strong evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference T2 term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5–10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence ∼Tn, with the exponent n=2.5–3. This behavior is explained well by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1585  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: