|   | 
Details
   web
Records
Author Mariantoni, Matteo; Wang, H.; Bialczak, Radoslaw C.; Lenander, M.; Lucero, Erik; Neeley, M.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yamamoto, T.; Yin, Y.; Zhao, J.; Martinis, John M.; Cleland, A. N.
Title Photon shell game in three-resonator circuit quantum electrodynamics Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue (down) 4 Pages 287-293
Keywords fromIPMRAS
Abstract The generation and control of quantum states of light constitute fundamental tasks in cavity quantum electrodynamics (QED). The superconducting realization of cavity QED, circuit QED (refs 11, 12, 13, 14), enables on-chip microwave photonics, where superconducting qubits control and measure individual photon states. A long-standing issue in cavity QED is the coherent transfer of photons between two or more resonators. Here, we use circuit QED to implement a three-resonator architecture on a single chip, where the resonators are interconnected by two superconducting phase qubits. We use this circuit to shuffle one- and two-photon Fock states between the three resonators, and demonstrate qubit-mediated vacuum Rabi swaps between two resonators. By shuffling superposition states we are also able to demonstrate the high-fidelity phase coherence of the transfer. Our results illustrate the potential for using multi-resonator circuits as photon quantum registers and for creating multipartite entanglement between delocalized bosonic modes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 838
Permanent link to this record
 

 
Author Zurek, Wojciech Hubert
Title Quantum Darwinism Type Journal Article
Year 2009 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 5 Issue (down) 3 Pages 181-188
Keywords fromIPMRAS
Abstract Quantum Darwinism describes the proliferation, in the environment, of multiple records of selected states of a quantum system. It explains how the quantum fragility of a state of a single quantum system can lead to the classical robustness of states in their correlated multitude; shows how effective `wave-packet collapse' arises as a result of the proliferation throughout the environment of imprints of the state of the system; and provides a framework for the derivation of Born's rule, which relates the probabilities of detecting states to their amplitudes. Taken together, these three advances mark considerable progress towards settling the quantum measurement problem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 799
Permanent link to this record
 

 
Author Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei
Title Experimental entanglement of six photons in graph states Type Journal Article
Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 3 Issue (down) 2 Pages 91-95
Keywords fromIPMRAS
Abstract Graph states-multipartite entangled states that can be represented by mathematical graphs-are important resources for quantum computation, quantum error correction, studies of multiparticle entanglement and fundamental tests of non-locality and decoherence. Here, we demonstrate the experimental entanglement of six photons and engineering of multiqubit graph states. We have created two important examples of graph states, a six-photon Greenberger-Horne-Zeilinger state, the largest photonic Schrödinger cat so far, and a six-photon cluster state, a state-of-the-art `one-way quantum computer'. With small modifications, our method allows us, in principle, to create various further graph states, and therefore could open the way to experimental tests of, for example, quantum algorithms or loss- and fault-tolerant one-way quantum computation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 796
Permanent link to this record
 

 
Author Hollenberg, Lloyd C. L.
Title Quantum control: Through the quantum chicane Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue (down) 2 Pages 113-114
Keywords fromIPMRAS
Abstract In quantum control there is an inherent tension between high fidelity requirements and the need for speed to avoid decoherence. A direct comparison of quantum control protocols at these two extremes indicates where the sweet spot may lie.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 812
Permanent link to this record
 

 
Author Korotkov, Alexander N.
Title Entanglement preservation: The Sleeping Beauty approach Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue (down) 2 Pages 107-108
Keywords fromIPMRAS
Abstract Two-qubit entanglement can be preserved by partially measuring the qubits to leave them in a 'lethargic' state. The original state is restored using quantum measurement reversal after the qubits have travelled through a decoherence channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 814
Permanent link to this record