toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Ursin, R.; Tiefenbacher, F.; Schmitt-Manderbach, T.; Weier, H.; Scheidl, T.; Lindenthal, M.; Blauensteiner, B.; Jennewein, T.; Perdigues, J.; Trojek, P.; Ömer, B.; Fürst, M.; Meyenburg, M.; Rarity, J.; Sodnik, Z.; Barbieri, C.; Weinfurter, H.; Zeilinger, A. openurl 
  Title Entanglement-based quantum communication over 144km Type Journal Article
  Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 3 Issue (down) 7 Pages 481-486  
  Keywords fromIPMRAS  
  Abstract Quantum entanglement is the main resource to endow the field of quantum information processing with powers that exceed those of classical communication and computation. In view of applications such as quantum cryptography or quantum teleportation, extension of quantum-entanglement-based protocols to global distances is of considerable practical interest. Here we experimentally demonstrate entanglement-based quantum key distribution over 144km. One photon is measured locally at the Canary Island of La Palma, whereas the other is sent over an optical free-space link to Tenerife, where the Optical Ground Station of the European Space Agency acts as the receiver. This exceeds previous free-space experiments by more than an order of magnitude in distance, and is an essential step towards future satellite-based quantum communication and experimental tests on quantum physics in space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 797  
Permanent link to this record
 

 
Author Perseguers, S.; Lewenstein, M.; Acín, A.; Cirac, J. I. openurl 
  Title Quantum random networks Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue (down) 7 Pages 539-543  
  Keywords fromIPMRAS  
  Abstract Quantum mechanics offers new possibilities to process and transmit information. In recent years, algorithms and cryptographic protocols exploiting the superposition principle and the existence of entangled states have been designed. They should allow us to realize communication and computational tasks that outperform any classical strategy. Here we show that quantum mechanics also provides fresh perspectives in the field of random networks. Already the simplest model of a classical random graph changes markedly when extended to the quantum case, where we obtain a distinct behaviour of the critical probabilities at which different subgraphs appear. In particular, in a network of N nodes, any quantum subgraph can be generated by local operations and classical communication if the entanglement between pairs of nodes scales as N-2. This result also opens up new vistas in the domain of quantum networks and their applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 804  
Permanent link to this record
 

 
Author Bylander, Jonas; Gustavsson, Simon; Yan, Fei; Yoshihara, Fumiki; Harrabi, Khalil; Fitch, George; Cory, David G.; Nakamura, Yasunobu; Tsai, Jaw-Shen; Oliver, William D. openurl 
  Title Noise spectroscopy through dynamical decoupling with a superconducting flux qubit Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue (down) 7 Pages 565-570  
  Keywords fromIPMRAS  
  Abstract Quantum coherence in natural and artificial spin systems is fundamental to applications ranging from quantum information science to magnetic-resonance imaging and identification. Several multipulse control sequences targeting generalized noise models have been developed to extend coherence by dynamically decoupling a spin system from its noisy environment. In any particular implementation, however, the efficacy of these methods is sensitive to the specific frequency distribution of the noise, suggesting that these same pulse sequences could also be used to probe the noise spectrum directly. Here we demonstrate noise spectroscopy by means of dynamical decoupling using a superconducting qubit with energy-relaxation time T1=12μs. We first demonstrate that dynamical decoupling improves the coherence time T2 in this system up to the T2=2T1 limit (pure dephasing times exceeding 100μs), and then leverage its filtering properties to probe the environmental noise over a frequency (f) range 0.2-20MHz, observing a 1/fα distribution with α<1. The characterization of environmental noise has broad utility for spin-resonance applications, enabling the design of optimized coherent-control methods, promoting device and materials engineering, and generally improving coherence.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 829  
Permanent link to this record
 

 
Author Ghali, Mohsen; Ohtani1, Keita; Ohno, Yuzo; Ohno, Hideo openurl 
  Title Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue (down) 661 Pages 6  
  Keywords fromIPMRAS  
  Abstract Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 769  
Permanent link to this record
 

 
Author Smith, Devin H.; Gillett, Geoff; de Almeida, Marcelo P.; Branciard, Cyril; Fedrizzi, Alessandro; Weinhold, Till J.; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Wiseman, Howard M.; Nam, Sae Woo; White, Andrew G. openurl 
  Title Conclusive quantum steering with superconducting transition-edge sensors Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue (down) 625 Pages 6  
  Keywords fromIPMRAS  
  Abstract Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 768  
Permanent link to this record
 

 
Author Knee, George C.; Simmons, Stephanie; Gauger, Erik M.; Morton, John J. L.; Riemann, Helge; Abrosimov, Nikolai V.; Becker, Peter; Pohl, Hans-Joachim; Itoh, Kohei M.; Thewalt, Mike L. W.; Briggs, G. Andrew D.; Benjamin, Simon C. openurl 
  Title Violation of a Leggett–Garg inequality with ideal non-invasive measurements Type Journal Article
  Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 3 Issue (down) 606 Pages 6  
  Keywords fromIPMRAS  
  Abstract The quantum superposition principle states that an entity can exist in two different states simultaneously, counter to our 'classical' intuition. Is it possible to understand a given system's behaviour without such a concept? A test designed by Leggett and Garg can rule out this possibility. The test, originally intended for macroscopic objects, has been implemented in various systems. However to date no experiment has employed the 'ideal negative result' measurements that are required for the most robust test. Here we introduce a general protocol for these special measurements using an ancillary system, which acts as a local measuring device but which need not be perfectly prepared. We report an experimental realization using spin-bearing phosphorus impurities in silicon. The results demonstrate the necessity of a non-classical picture for this class of microscopic system. Our procedure can be applied to systems of any size, whether individually controlled or in a spatial ensemble.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 767  
Permanent link to this record
 

 
Author Konstantatos, Gerasimos; Sargent, Edward H. openurl 
  Title Nanostructured materials for photon detection Type Journal Article
  Year 2010 Publication Nature Nanotechnology Abbreviated Journal Nat. Nanotech.  
  Volume 5 Issue (down) 6 Pages 391–400  
  Keywords  
  Abstract The detection of photons underpins imaging, spectroscopy, fibre-optic communications and time-gated distance measurements. Nanostructured materials are attractive for detection applications because they can be integrated with conventional silicon electronics and flexible, large-area substrates, and can be processed from the solution phase using established techniques such as spin casting, spray coating and layer-by-layer deposition. In addition, their performance has improved rapidly in recent years. Here we review progress in light sensing using nanostructured materials, focusing on solution-processed materials such as colloidal quantum dots and metal nanoparticles. These devices exhibit phenomena such as absorption of ultraviolet light, plasmonic enhancement of absorption, size-based spectral tuning, multiexciton generation, and charge carrier storage in surface and interface traps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 684  
Permanent link to this record
 

 
Author Wu, Ming C. openurl 
  Title Optoelectronic tweezers Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nature Photon  
  Volume 5 Issue (down) 6 Pages 322-324  
  Keywords fromIPMRAS  
  Abstract Using projected light patterns to form virtual electrodes on a photosensitive substrate, optoelectronic tweezers are able to grab and move micro- and nanoscale objects at will, facilitating applications far beyond biology and colloidal science.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 775  
Permanent link to this record
 

 
Author Fazal, Furqan M.; Block, Steven M. openurl 
  Title Optical tweezers study life under tension Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue (down) 6 Pages 318-321  
  Keywords fromIPMRAS  
  Abstract Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 776  
Permanent link to this record
 

 
Author Bialczak, R. C.; Ansmann, M.; Hofheinz, M.; Lucero, E.; Neeley, M.; O'Connell, A. D.; Sank, D.; Wang, H.; Wenner, J.; Steffen, M.; Cleland, A. N.; Martinis, J. M. openurl 
  Title Quantum process tomography of a universal entangling gate implemented with Josephson phase qubits Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 6 Issue (down) 6 Pages 409-413  
  Keywords fromIPMRAS  
  Abstract Quantum gates must perform reliably when operating on standard input basis states and on complex superpositions thereof. Experiments using superconducting qubits have validated truth tables for particular implementations of, for example, the controlled-NOT gate, but have not fully characterized gate operation for arbitrary superpositions of input states. Here we demonstrate the use of quantum process tomography (QPT) to fully characterize the performance of a universal entangling gate between two superconducting qubits. Process tomography permits complete gate analysis, but requires precise preparation of arbitrary input states, control over the subsequent qubit interaction and ideally simultaneous single-shot measurement of output states. In recent work, it has been proposed to use QPT to probe noise properties and time dynamics of qubit systems and to apply techniques from control theory to create scalable qubit benchmarking protocols. We use QPT to measure the fidelity and noise properties of an entangling gate. In addition to demonstrating a promising fidelity, our entangling gate has an on-to-off ratio of 300, a level of adjustable coupling that will become a requirement for future high-fidelity devices. This is the first solid-state demonstration of QPT in a two-qubit system, as QPT has previously been demonstrated only with single solid-state qubits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 803  
Permanent link to this record
 

 
Author Taylor, F.W. url  doi
openurl 
  Title Atmospheric physics: Natural lasers on Venus and Mars Type Journal Article
  Year 1983 Publication Nature Abbreviated Journal Nature  
  Volume 306 Issue (down) 5944 Pages 640-640  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 457  
Permanent link to this record
 

 
Author Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto; Sansoni, Linda; Bongioanni, Irene; Sciarrino, Fabio; Vallone, Giuseppe; Mataloni, Paolo openurl 
  Title Integrated photonic quantum gates for polarization qubits Type Journal Article
  Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 2 Issue (down) 566 Pages 6  
  Keywords fromIPMRAS  
  Abstract The ability to manipulate quantum states of light by integrated devices may open new perspectives both for fundamental tests of quantum mechanics and for novel technological applications. However, the technology for handling polarization-encoded qubits, the most commonly adopted approach, is still missing in quantum optical circuits. Here we demonstrate the first integrated photonic controlled-NOT (CNOT) gate for polarization-encoded qubits. This result has been enabled by the integration, based on femtosecond laser waveguide writing, of partially polarizing beam splitters on a glass chip. We characterize the logical truth table of the quantum gate demonstrating its high fidelity to the expected one. In addition, we show the ability of this gate to transform separable states into entangled ones and vice versa. Finally, the full accessibility of our device is exploited to carry out a complete characterization of the CNOT gate through a quantum process tomography.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 765  
Permanent link to this record
 

 
Author Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang openurl 
  Title Experimental loss-tolerant quantum coin flipping Type Journal Article
  Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.  
  Volume 2 Issue (down) 561 Pages 7  
  Keywords fromIPMRAS  
  Abstract Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 766  
Permanent link to this record
 

 
Author Baumert, Thomas openurl 
  Title Quantum technology: Wave packets get a kick Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue (down) 5 Pages 373-374  
  Keywords fromIPMRAS  
  Abstract Intense femtosecond pulses of infrared light can manipulate molecules. It is now shown that such control even extends to making different molecular eigenstates interfere with each other in a way never considered before -- a potential tool for optically engineered chemical reactions and for ultrafast information encoding and manipulation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 830  
Permanent link to this record
 

 
Author Ma, Xiao-Song; Dakic, Borivoje; Naylor, William; Zeilinger, Anton; Walther, Philip openurl 
  Title Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.  
  Volume 7 Issue (down) 5 Pages 399-405  
  Keywords fromIPMRAS  
  Abstract Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest in situations that are not amenable to classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. In particular, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analogue quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles. Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating-valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us with insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pairwise quantum correlations to observe the monogamy of entanglement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 842  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: