toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Schuck, C.; Pernice, W. H. P.; Minaeva, O.; Li, Mo; Gol'tsman, G.; Sergienko, A. V.; Tang, H. X. url  doi
openurl 
  Title Matrix of integrated superconducting single-photon detectors with high timing resolution Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue (up) 3 Pages 2201007-2201007  
  Keywords NbN SSPD, SNSPD, array, matrix  
  Abstract We demonstrate a large grid of individually addressable superconducting single photon detectors on a single chip. Each detector element is fully integrated into an independent waveguide circuit with custom functionality at telecom wavelengths. High device density is achieved by fabricating the nanowire detectors in traveling wave geometry directly on top of silicon-on-insulator waveguides. Our superconducting single photon detector matrix includes detector designs optimized for high detection efficiency, low dark count rate, and high timing accuracy. As an example, we exploit the high timing resolution of a particularly short nanowire design to resolve individual photon round-trips in a cavity ring-down measurement of a silicon ring resonator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1373  
Permanent link to this record
 

 
Author Korneev, A. A.; Korneeva, Y. P.; Mikhailov, M. Yu.; Pershin, Y. P.; Semenov, A. V.; Vodolazov, D. Yu.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Sivakov, A. G.; Devizenko, A. Yu.; Goltsman, G. N. doi  openurl
  Title Characterization of MoSi superconducting single-photon detectors in the magnetic field Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue (up) 3 Pages 2200504 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract We investigate the response mechanism of nanowire superconducting single-photon detectors (SSPDs) made of amorphous MoxSi1-x. We study the dependence of photon count and dark count rates on bias current in magnetic fields up to 113 mT at 1.7 K temperature. The observed behavior of photon counts is similar to the one recently observed in NbN SSPDs. Our results show that the detecting mechanism of relatively high-energy photons does not involve the vortex penetration from the edges of the film, and on the contrary, the detecting mechanism of low-energy photons probably involves the vortex penetration from the film edges.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ KorneevIEEE2015 Serial 991  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Manova, N.; Larionov, P.; Divochiy, A.; Semenov, A.; Chulkova, G.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. url  doi
openurl 
  Title Recent nanowire superconducting single-photon detector optimization for practical applications Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue (up) 3 Pages 2201204 (1 to 4)  
  Keywords SSPD, SNSPD  
  Abstract In this paper, we present our approaches to the development of fiber-coupled superconducting single photon detectors with enhanced photon absorption. For such devices we have measured detection efficiency in wavelength range from 500 to 2000 nm. The best fiber coupled devices exhibit detection efficiency of 44.5% at 1310 nm wavelength and 35.5% at 1550 nm at 10 dark counts per second.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ KorneevIEEE2013 Serial 996  
Permanent link to this record
 

 
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K. url  doi
openurl 
  Title High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
  Year 2019 Publication J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B  
  Volume 36 Issue (up) 3 Pages B20  
  Keywords NbN PNR SSPD, SNSPD  
  Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0740-3224 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1225  
Permanent link to this record
 

 
Author Smirnov, K.; Divochiy, A.; Vakhtomin, Y.; Morozov, P.; Zolotov, P.; Antipov, A.; Seleznev, V. url  doi
openurl 
  Title NbN single-photon detectors with saturated dependence of quantum efficiency Type Journal Article
  Year 2018 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 31 Issue (up) 3 Pages 035011 (1 to 8)  
  Keywords NbN SSPD, SNSPD  
  Abstract The possibility of creating NbN superconducting single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current was investigated. It was shown that the saturation increases for the detectors based on finer films with a lower value of Rs300/Rs20. The decreasing of Rs300/Rs20 was related to the increasing influence of quantum corrections to conductivity of superconductors and, in turn, to the decrease of the electron diffusion coefficient. The best samples have a constant value of system QE 94% at Ib/Ic ~ 0.8 and wavelength 1310 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1232  
Permanent link to this record
 

 
Author Shcherbatenko, M. L.; Elezov, M. S.; Goltsman, G. N.; Sych, D. V. url  doi
openurl 
  Title Sub-shot-noise-limited fiber-optic quantum receiver Type Journal Article
  Year 2020 Publication Phys. Rev. A Abbreviated Journal Phys. Rev. A  
  Volume 101 Issue (up) 3 Pages 032306 (1 to 5)  
  Keywords SSPD mixer, SNSPD  
  Abstract We experimentally demonstrate a quantum receiver based on the Kennedy scheme for discrimination between two phase-modulated weak coherent states. The receiver is assembled entirely from standard fiber-optic elements and operates at a conventional telecom wavelength of 1.55 μm. The local oscillator and the signal are transmitted through different optical fibers, and the displaced signal is measured with a high-efficiency superconducting nanowire single-photon detector. We show the discrimination error rate is two times below that of a shot-noise-limited receiver with the same system detection efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1268  
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film Type Journal Article
  Year 2018 Publication Low Temp. Phys. Abbreviated Journal Low Temp. Phys.  
  Volume 44 Issue (up) 3 Pages 221-225  
  Keywords WSi SSPD, SNSPD  
  Abstract Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of ∼0.5–0.6 times the critical current of the detector.

This work was supported by technical task No. 88 for scientific research at the National Research University “Higher School of Economics,” Grant No. 14.V25.31.0007 from the Ministry of Education and Science of Russia, and the work of G. N. Goltsman was supported by task No. 3.7328.2017/VU of the Ministry of Education and Science of Russia.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-777X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1310  
Permanent link to this record
 

 
Author Korneeva, Y.; Sidorova, M.; Semenov, A.; Krasnosvobodtsev, S.; Mitsen, K.; Korneev, A.; Chulkova, G.; Goltsman, G. url  doi
openurl 
  Title Comparison of hot-spot formation in NbC and NbN single-photon detectors Type Journal Article
  Year 2016 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 26 Issue (up) 3 Pages 1-4  
  Keywords NbC, NbN SSPD, SNSPD  
  Abstract We report an experimental investigation of the hot-spot evolution in superconducting single-photon detectors made of disordered superconducting materials with different diffusivity and energy downconversion time values, i.e., 33-nm-thick NbN and 23-nm-thick NbC films. We have demonstrated that, in NbC film, only 405-nm photons produce sufficiently large hot spot to trigger a single-photon response. The dependence of detection efficiency on bias current for 405-nm photons in NbC is similar to that for 3400-nm photons in NbN. In NbC, large diffusivity and downconversion time result in 1-D critical current suppression profile compared with the usual 2-D profile in NbN.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1348  
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Il'in, K.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Hubers, H.; Siegel, M.; Gol'tsman, G. url  doi
openurl 
  Title Effect of the wire width and magnetic field on the intrinsic detection efficiency of superconducting nanowire single-photon detectors Type Journal Article
  Year 2013 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 23 Issue (up) 3 Pages 2200205-2200205  
  Keywords SSPD, SNSPD  
  Abstract We present thorough measurements of the intrinsic detection efficiency in the wavelength range from 350 to 2500 nm for meander-type TaN and NbN superconducting nanowire single-photon detectors with different widths of the nanowire. The width varied from 70 nm to 130 nm. The open-beam configuration allowed us to accurately normalize measured spectra and to extract the intrinsic detection efficiency. For detectors from both materials the intrinsic detection efficiency at short wavelengths amounts at 100% and gradually decreases at wavelengths larger than the specific cut-off wavelengths, which decreases with the width of the nanowire. Furthermore, we show that applying weak magnetic fields perpendicular to the meander plane decreases the smallest detectable photon flux.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1376  
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N. url  doi
openurl 
  Title Single-photon experiments at telecommunication wavelengths using nanowire superconducting detectors Type Journal Article
  Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 91 Issue (up) 3 Pages 031106 (1 to 3)  
  Keywords SSPD, SNSPD, APD  
  Abstract The authors report fiber-coupled superconducting single-photon detectors with specifications that exceed those of avalanche photodiodes, operating at telecommunication wavelength, in sensitivity, temporal resolution, and repetition frequency. The improved performance is demonstrated by measuring the intensity correlation function g(2)(τ) of single-photon states at 1300nm produced by single semiconductor quantum dots.

This work was supported by Swiss National Foundation through the “Professeur borsier” and NCCR Quantum Photonics program, FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433), IP “QAP” (Contract No. 15848), NOE “ePIXnet,” and the Italian MIUR-FIRB program.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Erratum: 1395 Approved no  
  Call Number Serial 1396  
Permanent link to this record
 

 
Author Jukna, A.; Kitaygorsky, J.; Pan, D.; Cross, A.; Perlman, A.; Komissarov, I.; Sobolewski, R.; Okunev, O.; Smirnov, K.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Dynamics of hotspot formation in nanostructured superconducting stripes excited with single photons Type Journal Article
  Year 2008 Publication Acta Physica Polonica A Abbreviated Journal Acta Physica Polonica A  
  Volume 113 Issue (up) 3 Pages 955-958  
  Keywords SSPD, SNSPD  
  Abstract Dynamics of a resistive hotspot formation by near-infrared-wavelength single photons in nanowire-type superconducting NbN stripes was investigated. Numerical simulations of ultrafast thermalization of photon-excited nonequilibrium quasiparticles, their multiplication and out-diffusion from a site of the photon absorption demonstrate that 1.55 μm wavelength photons create in an ultrathin, two-dimensional superconducting film a resistive hotspot with the diameter which depends on the photon energy, and the nanowire temperature and biasing conditions. Our hotspot model indicates that under the subcritical current bias of the 2D stripe, the electric field penetrates the superconductor at the hotspot boundary, leading to suppression of the stripe superconducting properties and accelerated development of a voltage transient across the stripe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1414  
Permanent link to this record
 

 
Author Корнеева, Ю. П.; Трифонов, А. В.; Вахтомин, Ю. Б.; Смирнов, К. В.; Корнеев, А. А.; Рябчун, С. А.; Третьяков, И. В.; Гольцман, Г. Н. url  openurl
  Title Расчет согласующего оптического резонатора для сверхпроводникового нанополоскового детектора Type Journal Article
  Year 2012 Publication Преподаватель ХХI век Abbreviated Journal  
  Volume Issue (up) 3 Pages 225-227  
  Keywords SSPD, SNSPD  
  Abstract В статье произведен расчет резонатора, предназначенного для согласования сверхпроводникового нанополоскового однофотонного детектора с оптическим сигналом. Показано, что для детектора, выполненного из пленки с типичным сопротивлением квадрата 500 Ом и коэффициентом заполнения 0.5 коэффициент согласования с излучением, поляризованным параллельно полоскам детектора, достигает величины около 60%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1823  
Permanent link to this record
 

 
Author de Lara, D. Perez; Ejrnaes, M.; Casaburi, A.; Lisitskiy, M.; Cristiano, R.; Pagano, S.; Gaggero, A.; Leoni, R.; Golt’sman, G.; Voronov, B. url  doi
openurl 
  Title Feasibility investigation of NbN nanowires as detector in time-of-flight mass spectrometers for macromolecules of interest in biology (proteins) Type Journal Article
  Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue (up) 3-4 Pages 771-776  
  Keywords NbN SSPD, SNSPD, nanowires  
  Abstract We are investigating the possibility of using NbN nanowires as detectors in time-of-flight mass spectrometers for investigation of macromolecules of interest in biology (proteins). NbN nanowires could overcome the two major drawbacks encountered so far by cryogenic detectors, namely the low working temperature in the mK region and the slow temporal response. In fact, NbN nanowires can work at 5 K and the response time is at least a factor 10–100 better than that of other cryogenic detectors. We present a feasibility study based on a numerical code to calculate the response of a NbN nanowire. The parameter space is investigated at different energies from IR to macromolecules (i.e. from eV to keV) in order to understand if larger value of film thickness and width can be used for the keV energy region. We also present preliminary experimental results of irradiation with X-ray photons of NbN to simulate the effect of macromolecules of the same energy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1410  
Permanent link to this record
 

 
Author Korneev, Alexander; Vachtomin, Yury; Minaeva, Olga; Divochiy, Alexander; Smirnov, Konstantin; Okunev, Oleg; Gol'tsman, Gregory; Zinoni, C.; Chauvin, Nicolas; Balet, Laurent; Marsili, Francesco; Bitauld, David; Alloing, Blandine; Li, Lianhe; Fiore, Andrea; Lunghi, L.; Gerardino, Annamaria; Halder, Matthäus; Jorel, Corentin; Zbinden, Hugo url  doi
openurl 
  Title Single-photon detection system for quantum optics applications Type Journal Article
  Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume 13 Issue (up) 4 Pages 944-951  
  Keywords SSPD, SNSPD  
  Abstract We describe the design and characterization of a fiber-coupled double-channel single-photon detection system based on superconducting single-photon detectors (SSPD), and its application for quantum optics experiments on semiconductor nanostructures. When operated at 2-K temperature, the system shows 10% quantum efficiency at 1.3-¿m wavelength with dark count rate below 10 counts per second and timing resolution <100 ps. The short recovery time and absence of afterpulsing leads to counting frequencies as high as 40 MHz. Moreover, the low dark count rate allows operation in continuous mode (without gating). These characteristics are very attractive-as compared to InGaAs avalanche photodiodes-for quantum optics experiments at telecommunication wavelengths. We demonstrate the use of the system in time-correlated fluorescence spectroscopy of quantum wells and in the measurement of the intensity correlation function of light emitted by semiconductor quantum dots at 1300 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 430  
Permanent link to this record
 

 
Author Reiger, E.; Pan, D.; Slysz, W.; Jukna, A.; Sobolewski, R.; Dorenbos, S.; Zwiller, V.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Minaeva, O.; Gol'tsman, G.; Kitaygorsky, J. url  doi
openurl 
  Title Spectroscopy with nanostructured superconducting single photon detectors Type Journal Article
  Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.  
  Volume 13 Issue (up) 4 Pages 934-943  
  Keywords SSPD, SNSPD  
  Abstract Superconducting single-photon detectors (SSPDs) are nanostructured devices made from ultrathin superconducting films. They are typically operated at liquid helium temperature and exhibit high detection efficiency, in combination with very low dark counts, fast response time, and extremely low timing jitter, within a broad wavelength range from ultraviolet to mid-infrared (up to 6 mu m). SSPDs are very attractive for applications such as fiber-based telecommunication, where single-photon sensitivity and high photon-counting rates are required. We review the current state-of-the-art in the SSPD research and development, and compare the SSPD performance to the best semiconducting avalanche photodiodes and other superconducting photon detectors. Furthermore, we demonstrate that SSPDs can also be successfully implemented in photon-energy-resolving experiments. Our approach is based on the fact that the size of the hotspot, a nonsuperconducting region generated upon photon absorption, is linearly dependent on the photon energy. We introduce a statistical method, where, by measuring the SSPD system detection efficiency at different bias currents, we are able to resolve the wavelength of the incident photons with a resolution of 50 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1077-260X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1424  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: