toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Antipov, A. V.; Seleznev, V. A.; Vakhtomin, Y. B.; Morozov, P. V.; Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Smirnov, K. url  doi
openurl 
  Title Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range Type Conference Article
  Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.  
  Volume 781 Issue (up) Pages 012011 (1 to 5)  
  Keywords WSi, NbN SSPD, SNSPD  
  Abstract Spectral characteristics of WSi and NbN superconducting single-photon detectors with different surface resistance and width of nanowire strips have been investigated in the wavelength range of 1.3-2.5 μm. WSi structures with narrower strips demonstrated better performance for detection of single photons in longer wavelength range. The difference in normalized photon count rate for such structures reaches one order of magnitude higher in comparison with structures based on NbN thin films at 2.5 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-899X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1799  
Permanent link to this record
 

 
Author Matyushkin, Y.; Kaurova, N.; Voronov, B.; Goltsman, G.; Fedorov, G. url  doi
openurl 
  Title On chip carbon nanotube tunneling spectroscopy Type Journal Article
  Year 2020 Publication Fullerenes, Nanotubes and Carbon Nanostructures Abbreviated Journal  
  Volume 28 Issue (up) 1 Pages 50-53  
  Keywords carbon nanotubes, CNT, scanning tunneling microscope, STM  
  Abstract We report an experimental study of the band structure of individual carbon nanotubes (SCNTs) based on investigation of the tunneling density of states, i.e. tunneling spectroscopy. A common approach to this task is to use a scanning tunneling microscope (STM). However, this approach has a number of drawbacks, to overcome which, we propose another method – tunneling spectroscopy of SCNTs on a chip using a tunneling contact. This method is simpler, cheaper and technologically advanced than the STM. Fabrication of a tunnel contact can be easily integrated into any technological route, therefore, a tunnel contact can be used, for example, as an additional tool in characterizing any devices based on individual CNTs. In this paper we demonstrate a simple technological procedure that results in fabrication of good-quality tunneling contacts to carbon nanotubes.  
  Address  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number doi:10.1080/1536383X.2019.1671365 Serial 1269  
Permanent link to this record
 

 
Author Pentin, I.; Vakhtomin, Y.; Seleznev, V.; Smirnov, K. url  doi
openurl 
  Title Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation Type Journal Article
  Year 2020 Publication Sci. Rep. Abbreviated Journal Sci. Rep.  
  Volume 10 Issue (up) 1 Pages 16819  
  Keywords VN HEB  
  Abstract The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d approximately 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ Tc), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (omega approximately 0.140 THz) and sources in the IR region (omega approximately 193 THz) was conducted. The measured time of energy relaxation of electrons in the studied VN structures upon heating of THz and IR radiation completely coincided and amounted to (2.6-2.7) ns. The studied response of VN structures to IR (omega approximately 193 THz) picosecond laser pulses also allowed us to estimate the energy relaxation time in VN structures, which was ~ 2.8 ns and is in good agreement with the result obtained by the mixing method. Also, we present the experimentally measured volt-watt responsivity (S~) within the frequency range omega approximately (0.3-6) THz VN HEB detector. The estimated values of noise equivalent power (NEP) for VN HEB and its minimum energy level (deltaE) reached NEP@1MHz approximately 6.3 x 10(-14) W/ radicalHz and deltaE approximately 8.1 x 10(-18) J, respectively.  
  Address National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33033360; PMCID:PMC7546726 Approved no  
  Call Number Serial 1797  
Permanent link to this record
 

 
Author Matyushkin, Y.; Danilov, S.; Moskotin, M.; Belosevich, V.; Kaurova, N.; Rybin, M.; Obraztsova, E. D.; Fedorov, G.; Gorbenko, I.; Kachorovskii, V.; Ganichev, S. url  doi
openurl 
  Title Helicity-sensitive plasmonic terahertz interferometer Type Journal Article
  Year 2020 Publication Nano Lett. Abbreviated Journal Nano Lett.  
  Volume 20 Issue (up) 10 Pages 7296-7303  
  Keywords graphene, plasmonic interferometer, radiation helicity, terahertz radiation  
  Abstract Plasmonic interferometry is a rapidly growing area of research with a huge potential for applications in the terahertz frequency range. In this Letter, we explore a plasmonic interferometer based on graphene field effect transistor connected to specially designed antennas. As a key result, we observe helicity- and phase-sensitive conversion of circularly polarized radiation into dc photovoltage caused by the plasmon-interference mechanism: two plasma waves, excited at the source and drain part of the transistor, interfere inside the channel. The helicity-sensitive phase shift between these waves is achieved by using an asymmetric antenna configuration. The dc signal changes sign with inversion of the helicity. A suggested plasmonic interferometer is capable of measuring the phase difference between two arbitrary phase-shifted optical signals. The observed effect opens a wide avenue for phase-sensitive probing of plasma wave excitations in two-dimensional materials.  
  Address CENTERA Laboratories, Institute of High Pressure Physics, PAS, 01-142 Warsaw, Poland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32903004 Approved no  
  Call Number Serial 1781  
Permanent link to this record
 

 
Author Gorokhov, G.; Bychanok, D.; Gayduchenko, I.; Rogov, Y.; Zhukova, E.; Zhukov, S.; Kadyrov, L.; Fedorov, G.; Ivanov, E.; Kotsilkova, R.; Macutkevic, J.; Kuzhir, P. url  doi
openurl 
  Title THz spectroscopy as a versatile tool for filler distribution diagnostics in polymer nanocomposites Type Journal Article
  Year 2020 Publication Polymers (Basel) Abbreviated Journal Polymers (Basel)  
  Volume 12 Issue (up) 12 Pages 3037 (1 to 14)  
  Keywords THz spectroscopy; nanocomposites, percolation threshold, time-domain spectroscopy, time-domain spectrometer, TDS  
  Abstract Polymer composites containing nanocarbon fillers are under intensive investigation worldwide due to their remarkable electromagnetic properties distinguished not only by components as such, but the distribution and interaction of the fillers inside the polymer matrix. The theory herein reveals that a particular effect connected with the homogeneity of a composite manifests itself in the terahertz range. Transmission time-domain terahertz spectroscopy was applied to the investigation of nanocomposites obtained by co-extrusion of PLA polymer with additions of graphene nanoplatelets and multi-walled carbon nanotubes. The THz peak of permittivity's imaginary part predicted by the applied model was experimentally shown for GNP-containing composites both below and above the percolation threshold. The physical nature of the peak was explained by the impact on filler particles excluded from the percolation network due to the peculiarities of filler distribution. Terahertz spectroscopy as a versatile instrument of filler distribution diagnostics is discussed.  
  Address Institute of Photonics, University of Eastern Finland, Yliopistokatu 7, FI-80101 Joensuu, Finland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2073-4360 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33353036; PMCID:PMC7767186 Approved no  
  Call Number Serial 1780  
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Kardakova, A. I.; Piatrusha, S. U.; Khrapai, V. S. url  doi
openurl 
  Title Universal bottleneck for thermal relaxation in disordered metallic films Type Journal Article
  Year 2020 Publication JETP Lett. Abbreviated Journal Jetp Lett.  
  Volume 111 Issue (up) 2 Pages 104-108  
  Keywords NbN disordered metallic films, thermal relaxation  
  Abstract We study the heat relaxation in current biased metallic films in the regime of strong electron–phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering, the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of bias voltage, in spite of the fact that all the dimensions of the film are large compared to the electron–phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron–phonon scattering rate. A preliminary experimental study of a 200-nm-thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1164  
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Florya, I. N.; Mikhailov, M. Y.; Dobrovolskiy, O. V.; Korneev, A. A.; Vodolazov, D. Y. url  doi
openurl 
  Title Different single-photon response of wide and narrow superconducting MoxSi1−x strips Type Journal Article
  Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied  
  Volume 13 Issue (up) 2 Pages 024011 (1 to 7)  
  Keywords MoSi SSPD, SNSPD  
  Abstract The photon count rate (PCR) of superconducting single-photon detectors made of MoxSi1−x films shaped as a 2-μm-wide strip and a 115-nm-wide meander strip line is studied experimentally as a function of the dc biasing current at different values of the perpendicular magnetic field. For the wide strip, a crossover current Icross is observed, below which the PCR increases with an increasing magnetic field and above which it decreases. This behavior contrasts with the narrow MoxSi1−x meander, for which no crossover current is observed, thus suggesting different photon-detection mechanisms in the wide and narrow strips. Namely, we argue that in the wide strip the absorbed photon destroys superconductivity locally via the vortex-antivortex mechanism for the emergence of resistance, while in the narrow meander superconductivity is destroyed across the whole strip line, forming a hot belt. Accordingly, the different photon-detection mechanisms associated with vortices and the hot belt determine the qualitative difference in the dependence of the PCR on the magnetic field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2331-7019 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1790  
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N. url  doi
openurl 
  Title Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
  Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 128 Issue (up) 22 Pages 224303 (1 to 11)  
  Keywords HEB, resonant tunneling diode, RTD  
  Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1262  
Permanent link to this record
 

 
Author Shcherbatenko, M. L.; Elezov, M. S.; Goltsman, G. N.; Sych, D. V. url  doi
openurl 
  Title Sub-shot-noise-limited fiber-optic quantum receiver Type Journal Article
  Year 2020 Publication Phys. Rev. A Abbreviated Journal Phys. Rev. A  
  Volume 101 Issue (up) 3 Pages 032306 (1 to 5)  
  Keywords SSPD mixer, SNSPD  
  Abstract We experimentally demonstrate a quantum receiver based on the Kennedy scheme for discrimination between two phase-modulated weak coherent states. The receiver is assembled entirely from standard fiber-optic elements and operates at a conventional telecom wavelength of 1.55 μm. The local oscillator and the signal are transmitted through different optical fibers, and the displaced signal is measured with a high-efficiency superconducting nanowire single-photon detector. We show the discrimination error rate is two times below that of a shot-noise-limited receiver with the same system detection efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1268  
Permanent link to this record
 

 
Author Zvagelsky, R. D.; Chubich, D. A.; Kolymagin, D. A.; Korostylev, E. V.; Kovalyuk, V. V.; Prokhodtsov, A. I.; Tarasov, A. V.; Goltsman, G. N.; Vitukhnovsky, A. G. url  doi
openurl 
  Title Three-dimensional polymer wire bonds on a chip: morphology and functionality Type Journal Article
  Year 2020 Publication J. Phys. D: Appl. Phys. Abbreviated Journal J. Phys. D: Appl. Phys.  
  Volume 53 Issue (up) 35 Pages 355102  
  Keywords photonic wire bonds, PWB  
  Abstract Modern microchip-scale transceivers are capable of transmitting data at rates of the order of several terabits per second. In this regard, there is an urgent need to improve the interfaces connecting the chips and extend the bandpass of the interconnections. We use an approach combining silicon nitride nanophotonic circuits with 3D polymer waveguides fabricated by direct laser writing, which can be used as photonic interconnections or photonic wire bonds (PWB). These structures are designed, simulated, fabricated, and optimized for better light transmission at the telecommunication wavelength. An important part of this work is the study of the telecom signal transmission in a 3D polymer waveguide connecting two silicon nitride facing tapers. Two cases are considered: the tapers are one opposite the other or misaligned. Initially, the PWB shape was chosen to be Gaussian and then optimized: the top was circle-shaped and with the lower part still being Gaussian. Transmission losses were measured for both types of waveguides with different shapes. The idea of an optical multi-level crossing for photonic integrated circuits is also suggested as a solution to the problem of interconnections within a single chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3727 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1181  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: