|   | 
Details
   web
Records
Author Чулкова, Галина Меркурьевна; Семёнов, Александр Владимирович; Тархов, Михаил Александрович; Гольцман, Григорий Наумович; Корнеев, Александр Александрович; Смирнов, Константин Владимирович
Title О возможности использования PNR-SNPD в системах телекоммуникационной связи Type Journal Article
Year 2012 Publication Преподаватель ХХI век Abbreviated Journal
Volume Issue (up) 2 Pages 244-246
Keywords PNR SSPD, SNSPD, SNPD
Abstract Рассмотрена возможность применения сверхпроводникового нанополоскового детектора, разрешающего число фотонов (Photon-Number Resolving Superconducting Nanowire Photon Detector, PNR-SNPD), в качестве датчика приёмных модулей телекоммуникационных линий. Оценена мощность оптического импульса, необходимая для достижения приемлемо низкой доли ошибочных битов.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1826
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Fiore, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Goltsman, G.
Title Superconducting parallel nanowire detector with photon number resolving functionality Type Journal Article
Year 2009 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 56 Issue (up) 2-3 Pages 334-344
Keywords PNR; SSPD; SNSPD; thin superconducting films; photon number resolving detector; multiplication noise; telecom wavelength; NbN
Abstract We present a new photon number resolving detector (PNR), the Parallel Nanowire Detector (PND), which uses spatial multiplexing on a subwavelength scale to provide a single electrical output proportional to the photon number. The basic structure of the PND is the parallel connection of several NbN superconducting nanowires (100 nm-wide, few nm-thick), folded in a meander pattern. Electrical and optical equivalents of the device were developed in order to gain insight on its working principle. PNDs were fabricated on 3-4 nm thick NbN films grown on sapphire (substrate temperature TS=900C) or MgO (TS=400C) substrates by reactive magnetron sputtering in an Ar/N2 gas mixture. The device performance was characterized in terms of speed and sensitivity. The photoresponse shows a full width at half maximum (FWHM) as low as 660ps. PNDs showed counting performance at 80 MHz repetition rate. Building the histograms of the photoresponse peak, no multiplication noise buildup is observable and a one photon quantum efficiency can be estimated to be QE=3% (at 700 nm wavelength and 4.2 K temperature). The PND significantly outperforms existing PNR detectors in terms of simplicity, sensitivity, speed, and multiplication noise.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 701
Permanent link to this record
 

 
Author Słysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Górska, M.; Zwiller, V.; Latta, C.; Böhi, P.; Pearlman, A.J.; Cross, A.S.; Pan, D.; Kitaygorsky, J.; Komissarov, I.; Verevkin, A.; Milostnaya, I.; Korneev, A.; Minayeva, O.; Chulkova, G.; Smirnov, K.; Voronov, B.; Gol’tsman, G.N.; Sobolewski, R.
Title Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications Type Journal Article
Year 2007 Publication J. Modern Opt. Abbreviated Journal J. Modern Opt.
Volume 54 Issue (up) 2-3 Pages 315-326
Keywords NbN SSPD, SNSPD
Abstract We present a novel, two-channel, single photon receiver based on two fibre-coupled, NbN, superconducting, single photon detectors (SSPDs). The SSPDs are nanostructured superconducting meanders and are known for ultrafast and efficient detection of visible-to-infrared photons. Coupling between the NbN detector and optical fibre was achieved using a micromechanical photoresist ring placed directly over the SSPD, holding the fibre in place. With this arrangement, we obtained coupling efficiencies up to ∼30%. Our experimental results showed that the best receiver had a near-infrared system quantum efficiency of 0.33% at 4.2 K. The quantum efficiency increased exponentially with the photon energy increase, reaching a few percent level for visible-light photons. The photoresponse pulses of our devices were limited by the meander high kinetic inductance and had the rise and fall times of approximately 250 ps and 5 ns, respectively. The receiver's timing jitter was in the 37 to 58 ps range, approximately 2 to 3 times larger than in our older free-space-coupled SSPDs. We stipulate that this timing jitter is in part due to optical fibre properties. Besides quantum communications, the two-detector arrangement should also find applications in quantum correlation experiments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0950-0340 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1434
Permanent link to this record
 

 
Author Korneev, A.; Lipatov, A.; Okunev, O.; Chulkova, G.; Smirnov, K.; Gol’tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits Type Journal Article
Year 2003 Publication Microelectronic Engineering Abbreviated Journal Microelectronic Engineering
Volume 69 Issue (up) 2-4 Pages 274-278
Keywords NbN SSPD, SNSPD, applications
Abstract We present a new, simple to manufacture superconducting single-photon detector operational in the range from ultraviolet to mid-infrared radiation wavelengths. The detector combines GHz counting rate, high quantum efficiency and very low level of dark (false) counts. At 1.3–1.5 μm wavelength range our detector exhibits a quantum efficiency of 5–10%. The detector photoresponse voltage pulse duration was measured to be about 150 ps with jitter of 35 ps and both of them were limited mostly by our measurement equipment. In terms of quantum efficiency, dark counts level, speed of operation the detector surpasses all semiconductor counterparts and was successfully applied for CMOS integrated circuits diagnostics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-9317 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1511
Permanent link to this record
 

 
Author Seki, T.; Shibata, H.; Takesue, H.; Tokura, Y.; Imoto, N.
Title Comparison of timing jitter between NbN superconducting single-photon detector and avalanche photodiode Type Journal Article
Year 2010 Publication Phys. C Abbreviated Journal Phys. C
Volume 470 Issue (up) 20 Pages 1534-1537
Keywords SSPD; APD; jitter
Abstract We report the pulse-to-pulse timing jitter measurement of a niobium nitride (NbN) superconducting single-photon detector (SSPD) and an InGaAs avalanche photodiode (APD) at 1550-nm wavelength. A direct comparison of their timing jitter was performed by using the same experimental configuration to measure both detectors. The measured jitter of the SSPD and the APD are 75 and 84 ps at full-width at half-maximum (FWHM), and 138 and 384 ps at full-width at tenth-maximum (FWTM), respectively. The jitter of the SSPD remains small at FWTM while that of APD is wide. We also estimated the transmission distances and secure key generation rates for fiber-based quantum key distribution (QKD) which uses these detectors. The estimated transmission distances of the APD are 86 km and 107 km with respect to 1 ns and 100 ps time windows, respectively, and those of the SSPD are 125 km and 172 km with respect to 1 ns and 100 ps time windows, respectively. This estimation indicates the SSPDЃfs advantages for QKD compared to the APD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 613
Permanent link to this record